Pore Structure Analysis by Physisorption

The slide was adapted from Quantachrome and other sources only for educational purposes

Example of equipment

Autosorb

Quadrasorb

NOVA

Pores of Porous Solids

Porada et al., Progress in Materials Science 58 (2013) 1388–1442

Pores of Porous Solids

Pore size distribution

- Typical curves to characterise pore size:
 - Cumulative curve
 - Frequency curve
- Uniform size distribution (a) &non-uniform size distribution (b)

Frequency curve

Adsorption – physisorption - chemisorption

Adsorption is the process in which matter is extracted from one phase and concentrated at the surface of a second phase (Interface

accumulation)

Property	Physisorption	Chemisorption
Forces	van der Waals	Chemical bonding
∆H _{ads} (kJ mol ⁻¹)	< 40	50-200
E _a (kJ mol ⁻¹)	Rare	60–100
Isothermal Reversibility	Complete	Slow or none
Extent	Multilayers	Monolayer

Wang and Guo, Chemosphere, 258, 2020, 127279

Physisorption

The monolayer of adsorbed molecules; typically, 15 - 20% saturation

The multilayer capillary condensation stage approximately 70% saturation

Total pore volume filling; approximately 100% saturation

ADSORPTION ISOTHERM

- amount of N₂ adsorbed versus relative pressure at constant temperature
 - temperature: 77 K: boiling/condensation point of N₂ at p_{atm}=p°

 Amount adsorbed per unit adsorbent mass:

$$\begin{array}{ll} n & \text{mol/g} \\ V_{\text{ads, STP}} & \text{ml/g} = \text{cm}^3/\text{g} \end{array}$$

• STP = 0 °C, 1 bar

$$V_{ads,liq} = \frac{\rho_{N_2,STP}}{\rho_{N_2,liq}} V_{ads,STP}$$
$$= 0.001544 \times V_{ads,STP}$$

how is an adsorption isotherm recorded?

- Total volume of system determined:
 - "manifold" volume known
- System is evacuated
- Start of adsorption:
 - amount of gas dosed in manifold
 - p measured → quantity known
 - gas expanded into sample volume
 - equilibrium *p* measured; compared to calculated *p*
 - difference → amount adsorbed at p
- p° measured to account for temp changes in liq. N₂

Lower p/p° limit: determined by pump and pressure measurement

Adsorption on Solid Surface

• Six types of physisorption isotherms are found over all solids

Thommes et al, IUPAC Technical Report, 2015

Pure Appl. Chem. 2015; 87(9-10): 1051–1069

Limiting value (plateau) due to filled pores and essentially zero external area.

Type I or

pseudo-"Langmuir"

Steep initial region due to very strong adsorption, for example in micropores.

Types of Hysteresis

Thommes et al, IUPAC Technical Report, 2015

- H1: a narrow range of uniform mesopores (e.g. MCM 41, MCM 48)
- H2: complex pore structures (e.g. pore blocking)
- H3: typical for plate-like particles or pore network consists of macropores
- H4: typical micro-mesopores
- H5: unusual, typically open and partially blocked mesopores

The BET isotherm

- Theoretical development based on several assumptions:
 - multimolecular adsorption
 - 1st layer with fixed heat of adsorption H₁
 - following layers with heat of adsorption constant (= latent heat of condensation)
 - constant surface (i.e. no capillary condensation) gives

$$\frac{p}{v_a(p_0 - p)} = \frac{1}{v_m \cdot C} + \frac{C - 1}{v_m \cdot C} \cdot \frac{p}{p_0}$$

or

$$\frac{p}{v_a(p_0 - p)} = I + s \cdot \frac{p}{p_0}$$

The BET isotherm, cont.

Plot of left side vs. p/p₀ should give straight line with slope s and intercept I

$$\frac{p}{v_a(p_0-p)} = I + s \cdot \frac{p}{p_0}$$

Reorganizing gives

$$v_m = \frac{1}{s+I}$$
 and $C = \frac{I+s}{I}$

• Knowledge of S₀ (specific area for a volume of gas then allows the calculation of the specific surface area Sg:

$$S_{g} = \frac{V_{m} \cdot S_{0}}{m_{p}}$$

where m_p is the mass of the sample

Example SSA calculation

Determine the specific surface area of activated carbon, which an N_2 -isotherm curve at 77 K as shown in the figure!

Standard range for BET model: P/P0: 0.05 - 0.30

P/Po	Volume of adsorbate V (cm³/g), at STP	1/(Va(Po/P-1))	
0,0715	264,6179	0,00029101	$\frac{p}{I} = I + s \cdot \frac{p}{I}$
0,0953	279,7367	0,00037656	$v_a(p_0-p)$ p_0
0,1493	307,5930	0,00057057	
0,2013	332,7449	0,00075744	
0,2452	354,9241	0,00091528	
0,2976	383,9286	0,00110357	
0,2996	385,1396	0,00111065	

Standard range for BET model: P/P0: 0.05 - 0.30

$$\frac{p}{v_a(p_0-p)} = I + s \cdot \frac{p}{p_0}$$

Specific surface area then can be calculated:

$$v_m = \frac{1}{s+I}$$
 and $C = \frac{I+s}{I}$

$$S_{g} = \frac{V_{m} \cdot S_{0}}{m_{p}}$$

Adsorbates

• An adsorbate molecule covers an area σ , calculated assuming dense packing of the molecules in the multilayer. The corresponding area per volume gas is S_0 :

Gas	Temp. [K]	σ [Ų/molecule]	S ₀ [m ² /cm ³ gas (STP)]
N_2	77,5	16,2	4,36
Kr	77,5	19,5	5,24
Ar	77,5	14,6	3,92
H_2O	298	10,8	2,90
C_2H_6	90	22,5	6,05
$\overline{\text{CO}_2}$	195	19,5	5,24

Calculation Models

Comparisons

Gas Sorption Calculation Methods

P/Po range	Mechanism	Calculation model
1x10 ⁻⁷ to 0.02	micropore filling	DFT, GCMC, HK, SF, DA, DR
0.01 to 0.1	sub-monolayer formation	DR
0.05 to 0.3	monolayer complete	BET, Langmuir
> 0.1	multilayer formation	t-plot (de-Boer,FHH),
> 0.35	capillary condensation	BJH, DH
0.1 to 0.5	capillary filling	DFT, BJH
	in M41S-type materials	

BET: Not strictly applicable

- Tag all adsorption points
- Analyze behavior
- Note knee transition from micropore filling to *limited* multilayering (plateau).

- Use Langmuir
 (Monolayer model) /
 DR for Surface Area,
 Micropore Volume
- Usue Langmuir in range of 0.05 -> 0.2 (monolayer)

• Langmuir Surface Area

```
P/Po
                                  P/Po/W
      4.8787e-02
                                1.3125-01
      7.2426e-02
                                1.904E-01
      9.9303e-02
                                2.568E-01
      1.2234e-01
                                3.131E-01
      1.4707e-01
                                3.730E-01
                                4.339E-01
      1.7250e-01
      1.9907e-01
                                4.973E-01
  Lanqmuir surface area = 1.430E+03 \text{ m}^2/\text{q}
                   Slope = 2.435E+00
          Y - Intercept = 1.398E-02
Correlation Coefficient = 0.999961
    Langmuir constant K = 1.7422E+02
```

- DR Method for surface area, micropore volume
- Choose low relative pressure points (up to P/P0 = 0.2)

- Reports micropore surface area, and micropore volume.
- Note Langmuir, DR surface areas very close (1430 m²/g vs. 1424 m²/g)

```
log^2.00(Po/P)
                              Weight Adsorbed
                                   [grams]
       1.72055E+00
                                  4.304E+02
       1.29984E+00
                                  4.402E-02
       1.00608E+00
                                 4.475E-02
       8132544E-01:
                                 4.521E-02
                    slope = -2.399E-02
Y - Intercept (anti-log) = 4.732E-02
 Correlation Coefficient = 0.999033
Affinity coefficient (B) = 0.389343
      Average Pore Width = 0.032E-01 nm
  Adsorption Energy (Eo) = [1,619E+01] kJ/mol:
       Micro Pore Volume = 5.030E-01 cc/g
 Micro Pore Surface Area = 1.424E+03 \text{ m}^2/\text{g}
```


- BET Plot = OK
- Surface area ca. 8m²/g (low)
- Note hysteresis above P/P0 = 0.95: Pores > 35 nm

Statistical Thickness => Use de Boer for oxidic surfaces = silicas

Use BJH – shows narrow pore size distribution in 14-17nm range (mesopores)

Thank you