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 Crystallography
• Symmetry & crystal system
• Bravais lattices
• Point group & space group
• Miller indices

 Diffraction
• Diffraction by atom and plane of atoms
• Miller indices and diffraction
• Structure Factor
• Instrumentation
• X-ray generation
• Beam path (optics)

 X-ray monochromatizating
• Instrument configuration

 Optimum setup

 Sample Preparation
• Particle/Crystallite Size
• Homogeneity
• Texture/Preferred Orientation

 Data Acquisition
• Angular Range
• Step Size
• Counting Time

Course Materials
 Qualitative Analysis (Identification)

• Data base
• Phase Identification

 Quantitative Analysis (Rietveld Analysis)
• Intensity Equation
• Profile Function

• Instrumental function
• Sample physical function

• R-indices (How good is good enough)

 Qualitative Analysis
• Practices with …

 Sample : mixture of Al2O3, CaF2, Zincite (Quantitative Analysis 
Round Robin (QARR) sample from International Union for 
Crystallography (IUCr))

 Quantitative Analysis
• Practices with …

 Sample : mixture of Al2O3, CaF2, Zincite (QARR sample from IUCR)

 Advanced Analysis
• Practices with PM2K (Whole Powder Pattern Modelling) => Microstructure

 Sample : CeO2 (Size Strain Round Robin (SSRR) sample from IUCR)
• Practices with Rietan-FP/GSAS/Fullprof/Z-Rietveld => Electron Density

 Sample : CeO2/Fa-apatite

Brief 
overview



Software:

EVA : https://www.bruker.com/en/products-and-
solutions/diffractometers-and-scattering-systems/x-ray-
diffractometers/diffrac-suite-software/diffrac-eva.html
Topas : https://www.bruker.com/en/products-and-
solutions/diffractometers-and-scattering-systems/x-ray-
diffractometers/diffrac-suite-software/diffrac-topas.html

JADE : https://www.icdd.com/mdi-jade/
PDF-4+ : https://www.icdd.com/pdf-4/

QualX2 : http://www.ba.ic.cnr.it/softwareic/qualx/
PowCod : http://www.ba.ic.cnr.it/softwareic/qualx/powcod-
download/
GSAS : https://subversion.xray.aps.anl.gov/trac/EXPGUI
Profex : https://www.profex-xrd.org/?page_id=279
PM2K : Matteo.Leoni@unitn.it
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crystals have a
crystal structure

solid – liquid – gaseousaggregate state

amorphous crystalline

 Definition: Crystals are homogeneous, anisotropic 
solid-state bodies, which constituents (atoms, ions,  
molecules…) are three-dimensional/3D periodically  
ordered.

 Solid-state bodies without such a 3D periodic  
order of its constituents are called amorphous  
(gels, glasses, wood, plastic….).

Definition



Crystals – Anisotropy
 all crystals show anisotropy

 this means that certain chemical or physical properties 
are different for different directions, they are
directional

 anisotropic properties are, for instance

 hardness, cleavability

 elasticity, expansion properties



graphite

electric conductivity

Crystals – Anisotropy
 all crystals show anisotropy

 this means that certain chemical or physical properties 
are different for different directions, they are
directional

 anisotropic properties are, for instance

 hardness, cleavability

 elasticity, expansion properties

 electric / thermal conductivity

 electric polarizability, magnetization



 all crystals show anisotropy

 this means that certain chemical or physical properties 
are different for different directions, they are
directional

 anisotropic properties are, for instance

 hardness, cleavability

 elasticity, expansion properties

 electric / thermal conductivity

 electric polarizability, magnetization

Crystals – Anisotropy



Energy and Packing

 Non dense, random packing

typical neighbor 
bond length 

typical neighbor 
bond energy

Energy 

r

 Dense, ordered packing

typical neighbor 
bond length 

typical neighbor 
bond energy

Energy

r

•  atoms pack in periodic, 3D arrays
Crystalline materials...

 metals
 many ceramics
 some polymers

•  typical of:

•  atoms have no periodic packing
Non-crystalline materials...

 complex structures
 rapid cooling

•  occurs for:

Callister & Rethwisch, 8e.



Metallic Crystal Structure
How can we stack metal atoms to minimize empty space?

2-dimensions 3-dimensions Callister & Rethwisch, 8e.



Unit Cell and Packing Factor

 No. of atom in unit cell

 Cubic:

 Hexagonal:

 Atomic Packing Factor
𝑉𝑉𝑠𝑠 = 𝑁𝑁 × 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 4

4
3𝜋𝜋𝑅𝑅

3 =
16
3 𝜋𝜋𝑅𝑅3

𝑉𝑉𝑐𝑐 = 𝑎𝑎3 = (2𝑅𝑅 2)3= 16𝑅𝑅3 2

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑉𝑉𝑠𝑠
𝑉𝑉𝑐𝑐

=
16/3 𝜋𝜋𝑅𝑅3

16𝑅𝑅3 2
= 0.74

Callister & Rethwisch, 8e.



Metallic Crystal Structure
How can we stack metal atoms to minimize empty space?

2-dimensions 3-dimensions Callister & Rethwisch, 8e.

APF = 0.68

APF = 0.74



Density and Material Selection
ρmetals > ρceramics > ρpolymers

Data from Table B.1, Callister & Rethwisch, 8e.
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Based on data in Table B1, Callister 

*GFRE, CFRE, & AFRE are Glass,
Carbon, & Aramid Fiber-Reinforced
Epoxy composites (values based on
60% volume fraction of aligned fibers

in an epoxy matrix).10
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Magnesium

Aluminum

Steels

Titanium

Cu,Ni
Tin, Zinc

Silver, Mo

Tantalum
Gold, W
Platinum

Graphite
Silicon
Glass -soda
Concrete

Si nitride
Diamond
Al oxide

Zirconia

HDPE, PS
PP, LDPE
PC

PTFE

PET
PVC
Silicone

Wood

AFRE*
CFRE*
GFRE*
Glass fibers

Carbon fibers
Aramid fibers

Materials Selection in Mechanic 
Ashby - Chart



Phase Diagram of Fe-Fe3C

Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990.



Phase Diagram of Steel



Pearlite Structure



Steel processing as f(t)

Martensite
tempered Martensite
Bainite
Fine Pearlite
Coarse Perlite
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RECONSTRUCTIVE
Diffusion of all atoms during nucleation and 

growth. Sluggish below 850 K.

ALLOTRIOMORPHIC FERRITE
(Shape doesn’t reflect its 

symmetry)

IDIOMORPHIC FERRITE
(Shape some relation to 

crystallographic symmetry)

MASSIVE FERRITE
No change in bulk composition

PEARLITE
Cooperative growth of ferrite and 

cementite

Atomic Mechanisms of Transformation

H. K. D. H. Bhadeshia - University of Cambridge

DISPLACIVE
Invariant-plane strain shape deformation with 
large shear component. No Iron substitutional 

solute diffusion. Thin plate shape

WIDMANSTATTEN FERRITE
Carbon diffusion during para-

equilibrium nucleation & growth

BAINITE & ACICULAR FERRITE
Carbon diffusion during para-

equilibrium nucleation. No 
diffusion during growth 

MARTENSITE
Diffusionless nucleation & growth

http://www.phase-trans.msm.cam.ac.uk/2008/Steel_Microstructure/SM.html


Soil and Soil Dynamics

Minerals

Rocks

Soil

Biosphere
Atmosphere

Hydrosphere

Time

Types

Particle SizePorosity

Sand Silt Clay

Weathering

Physical Chemical

<0.002mm
0.002-0.05mm

0.05-2mm



Mineral Physical Properties
Gypsum, CaSO4(H2O)2 Calcite, CaCO3Talc, Mg3Si4O10(OH)2 Fluorite, CaF2



Mineral Physical Properties
Orthoclase, KAlSiO3 Quartz, SiO2Apatite, Ca10(PO4)6(OH,F,Cl)2 Topaz, Al2SiO4(F,OH)2



Mineral Physical Properties
Corundum, Al2O3 Moissanite, SiC Diamond, C



Hardnes and Material Selection
Materials Selection in Mechanic 

Ashby - Chart
Hardness of Minerals



Crystals and Symmetry
Imagine…

 having to describe an infinite crystal with an infinite number of atoms

 or even a finite crystal, with some 1020 atoms

Sounds horrible?... Well, there’s symmetry to help you out! Instead of an infinite number of atoms, you only

need to describe the contents of one-unit cell, the structural repeating motif…

 and life could be even easier, if there are symmetry elements present inside the unit cell!
 you only need to describe the asymmetric unit if this is the case
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Systematization

cubic

tetragonal

hexagonal

trigonal

monoclinic

orthorhombic

triclinic

unit cell
crystal system

Miller indices

point group

crystal class

spacegroup

tetrahedral holes octahedral holes

coordination polyhedra
cube, prism, rhombic dodecahedron

edge-connected corner-connected

crystal faces

habitus

isotypic

primitive

hkl values

(111) lattice plane families

morphology
variety

2,3,4,6-fold axis of rotation

symmetry elements
1-bar 6-bar  

inversion centre

face-centered

Bravais lattices
body-centered

lattice
base

motif

quasicrystal  
quasi crystalline

Systematization



Systematization of Crystal Structures

1. Step: Crystal Systems
metric + symmetry of the UC

7



Task
Divide a space/volume into identical building blocks  

use only blocks that are geometrically regular

use only a single sort of blocks

a
(α = β = γ = 90°)

a  
a

cube
cube

The Concept of the Unit Cell

Source: Frank Hoffmann



Task
Divide a space/volume into identical building blocks  

use only blocks that are geometrically regular

use only a single sort of blocks

cube

(α = β = γ = 90°)

square plate

a
a

c

The Concept of the Unit Cell



Task
Divide a space/volume into identical building blocks  

use only blocks that are geometrically regular

use only a single sort of blocks

cube rectangular prism

b
c

a

(α = β = γ =90°)

The Concept of the Unit Cell

Source: Frank Hoffmann



6 faces  
hexahedra

8 faces

The Concept of the Unit Cell
Task
Divide a space/volume into identical building blocks  

use only blocks that are geometrically regular

use only a single sort of blocks

Source: Frank Hoffmann



Task
Divide a space/volume into identical building blocks  

use only blocks that are geometrically regular

use only a single sort of blocks

c

a

γ = 120°

a a
a
γ = 120°

1.

2.

The Concept of the Unit Cell

Source: Frank Hoffmann



voids
not completely space-filling

no voids
completely space-filling

completely space-filling  
but two orientations

The Concept of the Unit Cell

Source: Frank Hoffmann



 Which geometrical regular bodies fill the space completely (without gaps) by  

joining them together only by translation along all three spatial directions?

parallelepipeds!

 A parallelepiped (epipedo = Greek for face)

is a geometric body, which is confined by six

parallelograms, of which two of each are  

congruent (superimposable) and lie in  

parallel planes.

α ≠ β ≠ γ ≠ 90°

a
b

c

The Concept of the Unit Cell

Source: Frank Hoffmann



x

y

 The unit cell is the unit, which builds up the whole crystal structure by  

repeated translations along all three spatial directions.
z

The Unit Cell Definition

x

y

z

Source: Frank Hoffmann



HO  HO HO
HO  HO HO

Metric
 it is defined by six cell/lattice parameters

 the three cell/lattice constants, the lengths of the edges (a, b, and c)
 and three angles between these edges (α, β, and γ)

Symmetry
 it contains all present symmetry elements

 defines the minimum size of the unit cell

Chemical Composition (Stoichiometry)
 the chemical content of an unit cell corresponds to the

chemical composition of the considered compound (!)

H2O  
2H:1O

Unit Cell Attributes

H2O  H2O
H2O  H2O

H2O  H2O
H2O  H2O

H2O  H2O
H2O  H2O

b
c

γ
αβ  

a

x

y

z

Source: Frank Hoffmann



b

c

γ
αβ

a

cell constants angles

triclinic a ≠ b ≠ c α ≠ β ≠ γ ≠ 90°
monoclinic a ≠ b ≠ c α = γ = 90°, β ≠ 90°

orthorhombic a ≠ b ≠ c α = β = γ = 90°
tetragonal a = b ≠ c α = β = γ = 90°

trigonal a = b ≠ c α = β = 90°; γ = 120°
hexagonal a = b ≠ c α = β = 90°; γ = 120°

cubic a = b = c α = β = γ = 90°

hexagonal crystal family
symmetry

maximum  
symmetry

1
2/m

mmm  
4/mmm  

3m  
6/mmm  

m3m

Classification of unit cells
Every imaginable crystal of the world belongs to one  
of altogether 7 possible crystal systems

restrictions for

7 – Crystal System

Source: Frank Hoffmann



7 – Crystal System

Source: Frank Hoffmann



crystals have a
crystal structure

crystal structure = lattice + motif

Crystal Structure = Lattice + Motif/Base



Lattice
 Lattice = infinite arrangement of points in space (3D) / in the plane (2D) / on a line (1D),  

in which all points have the same surroundings



 Lattice = infinite arrangement of points in space (3D) / in the plane (2D) / on a line (1D),  
in which all points have the same surrounding

Lattice - Surroundings



 Lattice = infinite arrangement of points in space (3D) / in the plane (2D) / on a line (1D),  
in which all points have the same surrounding

Lattice - Surroundings



 the lattice points are the connection points between the unit cells

x

y

z

Lattice Points

Source: Frank Hoffmann



y

 every corner of all unit cells builds a lattice point

 a lattice is characterized by its lattice vectors (translation vectors) = they span the unit cell

 the lattice points can be transferred into each other by these vectors

b

c

Crystal Structure = Lattice + Base/Motif

z

Source: Frank Hoffmann



 the motif consists of the arrangement of the building blocks (atoms, molecules) of a unit cell

 the motif is represented by a lattice point

y

z

b

c

Crystal Structure = Lattice + Base/Motif

Source: Frank Hoffmann



y
b

c

 the motif consists of the arrangement of the building blocks (atoms, molecules) of a unit cell

 the motif is represented by a lattice point

three atomic molecule

z

Crystal Structure = Lattice + Base/Motif

Source: Frank Hoffmann



y
b

c

 the motif consists of the arrangement of the building blocks (atoms, molecules) of a unit cell

 the motif is represented by a lattice point

three atomic molecule

z

All building blocks of a crystal structure are subject to the same translation principle!

Crystal Structure = Lattice + Base/Motif

Source: Frank Hoffmann



y
b

c

 the motif consists of the arrangement of the building blocks (atoms, molecules) of a unit cell

 the motif is represented by a lattice point

three atomic molecule

z

All building blocks of a crystal structure are subject to the same translation principle!

Crystal Structure = Lattice + Base/Motif

Source: Frank Hoffmann



y
b

c

 the motif consists of the arrangement of the building blocks (atoms, molecules) of a unit cell

 the motif is represented by a lattice point

three atomic molecule

z

Crystal Structure = Lattice + Base/Motif

All building blocks of a crystal structure are subject to the same translation principle!

All atoms of a crystal build congruent crystal lattices!
Source: Frank Hoffmann



7 crystal systems countless forms
of appearance

triclinic

monoclinic

orthorhombic  

tetragonal  

trigonal  

hexagonal  

cubic

Rock Crystal (Quartz, SiO2)

?

Morphology of Crystals

Source: Frank Hoffmann



 FeS2

 cubic crystal system
 space group Pa3
 a = 5.14 Å
 FeS6 octahedra
 S-SFe3 tetrahedra

pentagon  
dodecahedronoctahedroncube rhombic  

dodecahedron

Morphology of Pyrite



 Quartz (SiO2)

macroscopically

?

microscopically

SiO4 tetrahedra

Correspondence Principle



Stacking Cubes – Face Development

Source: Frank Hoffmann



 the relative face development, i.e. their  
relative sizes gives rise to the habitus

 two crystals can have the same facet but  
different habitus, and they can have the same  
habitus but different trachts

 habitus: isometric, needle-like, plate-like,  
cubically, column…

cube octahedron rhombic  
dodecahedron

pyramid  
cube

icositetra-
hedron

trisoctahedron hexakis-
octahedron

same facet – different habitus

same habitus (isometric) – different facet

 the total set of faces developed on a crystal  
is called Facet (‘costume’)

number and composition of faces of  
the outer limiting planes of a crystal

Facet and Habitus

Source: Frank Hoffmann



(100)

(110)

combination of a hexahedron (cube)  
and a rhombic dodecahedron

Miller indices are used to name the crystal
faces in a systematic manner, and are also
used to denominate lattice planes.

Miller Indices

Source: Frank Hoffmann



Miller Indices

René Just Haüy

(1743 – 1822)

William Hallowes Miller

(1801 – 1880)

Source: Frank Hoffmann



Hauyenite

René Just Haüy

(1743 – 1822)

hauyne / hauynite
tecto(alumo)silicate  

Na3Ca(Si3Al3)O12(SO4)



 lattice planes are a family of parallel planes
which intersects the Bravais lattice and are
periodic

 these crystallographic planes are
fictitious planes linking nodes, i.e. lattice points

unit cell

b

a

Lattice Planes

Source: Frank Hoffmann



 lattice planes are a family of parallel planes
which intersects the Bravais lattice and are
periodic

 these crystallographic planes are
fictitious planes linking nodes, i.e. lattice points

 in principle there is an infinite number of  
plane families (all parallel planes of a  
particular type)

 Miller indices form a notation system for  
such planes and are expressed by three  
integers: (h k l)

b

a

Lattice Planes

Source: Frank Hoffmann



 In how many fractions do the planes  
intersect the respective lattice constants  
a, b, (and c)?

If one of the indices is zero, it  
means that the planes do not  
intersect that axis (the intercept is  
"at infinity")

(010)

(120)
b

a

Determining Miller Indices

Source: Frank Hoffmann



(120)

d010 (010)

d120

the lower the indices the higher
the density of lattice points onto
this plane

the lower the indices the larger  
the distance d between two  
adjacent planes of a plane family

d - Spacings

Source: Frank Hoffmann



(120)

(120)
 if the intercepts are on the negative side

of the coordinate system the indices get  
a bar above the number (= minus)

b

a

Negative Miller Indices

Source: Frank Hoffmann



A: ?

B: ?

C: ?

D: ?

E: ?

b

a

Exercise - Miller Indices

Source: Frank Hoffmann



d

(1 0 0)

a

c

b

Miller Indices in 3D

Source: Frank Hoffmann



a

c

b

d

(0 1 0)

Miller Indices in 3D

Source: Frank Hoffmann



(1 1 1)

a

c

b

Miller Indices in 3D

Source: Frank Hoffmann



(100)

(110)

combination of a hexahedron (cube) and  
a rhombic dodecahedron

the outermost planes of a crystal  
build the faces!

Miller Indices of Faces

Source: Frank Hoffmann



(100)

(110)

combination of a hexahedron (cube) and  
a rhombic dodecahedron

the outermost planes of a crystal  
build the faces!

110

-110-1-10

1-10

+b

+a

100

-100

0-10 010

-a

-b

Miller Indices of Faces

Source: Frank Hoffmann



Systematization of Crystal Structures

1. Step: Crystal Systems
metric + symmetry of the UC

7

2. Step: Bravais lattices
primitive + centered

14



triclinic monoclinic
ortho-

rhombic
cubictrigonal/  

hexagonal
tetragonal trigonal

primitive = simple

there are lattice points only at every corner of the unit cell,  
but not inside the cell or at the faces or edges

a primitive unit cell comprises exactly 1 motif (1/8 * 8 = 1)  

the primitive unit cell is the smallest possible unit cell

it is always possible to find such a primitive unit cell

7 Primitive Lattices

Source: Frank Hoffmann



centering of cells / 14 Bravais lattices

? ??

Choice of the Unit Cell

Is the smallest possible unit cell always the best cell?

Source: Frank Hoffmann



Choice of the Unit Cell

Source: Frank Hoffmann



 The unit cell should be as small as  
possible; short lattice vectors!

 At the same time it should represent the  
symmetry of the crystal; this means that  
the lattice vectors should run parallel to  
symmetry axes or perpendicular to  
symmetry planes.

 The axes should be, if possible, orthogonal 
(or hexagonal)!

5 possible primitive unit cells,  
all with the same ‘volume’

90°

m

m

Choice of the Unit Cell

Source: Frank Hoffmann



The choice of the unit cell…

 Due to symmetry reasons it is sometimes
advantageous to choose not the smallest
possible unit cell!

 Centered cells contain additional lattice points.

 The purpose is to describe the crystal in a higher  
symmetric system of coordinates!

 But note: The crystal system does not change!

 The centered unit cell possess the same  
symmetry as the primitive one, but the  
symmetry becomes more evident!

centered unit cell (UC)

primitive unit cells

90°

m

m

Choice of the Unit Cell

Source: Frank Hoffmann



body-centered  
unit cell

single-side face-centered  
unit cell

all-side face-centered  
unit cell

primitive  
unit cell

P C(AB) I F

 If lattice points are only at the corners of the unit cell, it is a primitive lattice; there are 7 different 
primitive lattices.

 Addition of further lattice points – under retention of the symmetry – give rise to 7 more lattices,  
7 centered lattices. This leads to the 14 Bravais lattices.

Centered Cells

Source: Frank Hoffmann



8 corners x 1/8 = 1 lattice point/unit cell

P

Centered Cells – Formula Units

Source: Frank Hoffmann



(8 corners x 1/8) + (2 faces x 1/2) = 2 lattice points/unit cell

C(AB)

Centered Cells – Formula Units

Source: Frank Hoffmann



Centered Cells – formula units/lattice points

(8 corners x 1/8) + (1 inside) = 2 lattice points/unit cell

I

Centered Cells – Formula Units

Source: Frank Hoffmann



Centered Cells – formula units/lattice points

(8 corners x 1/8) + (6 faces x 1/2) = 4 lattice points/unit cell

F

Centered Cells – Formula Units

Source: Frank Hoffmann



Centered Cells

body-centered  
unit cell

single-side face-centered  
unit cell

all-side face-centered  
unit cell

primitive  
unit cell

P C(AB) I F

 If lattice points are only at the corners of the unit cell, it is a primitive lattice; there are 7 different 
primitive lattices.

 Addition of further lattice points – under retention of the symmetry – give rise to 7 more lattices,  
7 centered lattices. This leads to the 14 Bravais lattices.

Centered Cells

Source: Frank Hoffmann



The 14 Bravais lattices

7 × 4 = 14 (?)crystal systems

kind of centerings

Bravais lattices

14 Bravais Lattices

Source: Frank Hoffmann



P

C(AB)

I

F

R

triclinic monoclinic orthorhombic tetragonal hexagonal/trigonal cubic

14 Bravais Lattices



* 23th August 1811 in Annonay, Frankreich
† 30th March 1863 in Le Chesnay
French physicist, crystallographer, universal scholar

some of the 28 conceivable lattice types are redundant

some of them are not possible due to symmetry reasons

Auguste Bravais

in 1848 he could show that there are only  
14 unique different lattice types in 3D space

14 Bravais Lattices

Source: Frank Hoffmann
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14 Bravais Lattices - Redundancy  

Source: Frank Hoffmann
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14 Bravais Lattices – Incompatible Symmetry

Source: Frank Hoffmann
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14 – Bravais Lattice
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Crystal Family Bravais Lattice



 Atom sites: Where are the atoms  
located inside of the unit cell?

 usage of the crystallographic  
system of coordinates

c

a = 5 Å, b = 20 Å, c = 15 Å α = β = γ = 90°

Atom 1: 0.5, 0.5, 0.5
Atom 1: x = 2.5 Å, y = 10 Å, z = 7.5 Å absolute coordinates

relative or fractional coordinates

b
a

Fractional Coordinates

 the lattice constants are used  
as units

 the atomic site parameters
are given as a coordination
triple (x, y, z) and are
fractional amounts of the  
lattice constants (a, b, c)

Source: Frank Hoffmann



 Atom sites: Where are the atoms  
located inside of the unit cell?

 usage of the crystallographic  
system of coordinates

c

a = 5 Å, b = 20 Å, c = 15 Å α = β = γ = 90°

Atom 2: 1, 0.5, 0
Atom 2: x = 5 Å, y = 10 Å, z = 0 Å absolute coordinates

relative or fractional coordinates

b
a

Fractional Coordinates

 the lattice constants are used  
as units

 the atomic site parameters
are given as a coordination
triple (x, y, z) and are
fractional amounts of the  
lattice constants (a, b, c)

Source: Frank Hoffmann



 Atom sites: Where are the atoms  
located inside of the unit cell?

 usage of the crystallographic  
system of coordinates

c

a = 5 Å, b = 20 Å, c = 15 Å α = β = γ = 90°

Atom 3: 0.5, 1, 0.5
Atom 3: x = 2.5 Å, y = 20 Å, z = 7.5 Å absolute coordinates

relative or fractional coordinates

b
a

Fractional Coordinates

 the lattice constants are used  
as units

 the atomic site parameters
are given as a coordination
triple (x, y, z) and are
fractional amounts of the  
lattice constants (a, b, c)

Source: Frank Hoffmann



 Atom sites: Where are the atoms  
located inside of the unit cell?

 usage of the crystallographic  
system of coordinates

 the lattice constants are used  
as units

 the atomic site parameters
are given as a coordination
triple (x, y, z) and are
fractional amounts of the  
lattice constants (a, b, c)

a
b

c (½,½,½)

(x,y,z)

(1,y,0)

(0,0,0) = (1,0,0) = (0,1,0) =…

(1,1,1)

(0,1,½)

(½,1,1)

(½,0,½)

Fractional Coordinates

Source: Frank Hoffmann



Space-group P 1  
triclinic
a = 5.9553 Å
b = 6.1084 Å
c = 10.7048 Å

α = 77.4090°
β = 82.3720°
γ = 72.6740°

Atomic parameters (x/a y/b z/c)

Cu1 1/2 1/2 1/2  
Cu2 1/2 0 0
S1 0.12527 -0.01315 0.28634
O1 0.64893 -0.28899 0.11748
O2 0.65182 0.18247 0.07346
O3 1.12844 -0.43479 0.12435
O4 0.20280 0.46556 0.59358
O5 -0.11557 -0.04315 0.30159
O6 0.13680 0.13959 0.37259
O7 0.29749 -0.24436 0.31756
O8 0.17223 0.09305 0.15153
O9 0.48076 0.75491 0.58387

Cu1

O1 O2

O3O4

S1 Cu2

O6

O7

O8

O5
O9

Chalcanthite

Cu2 S1

O7

Atomic parameters (x/a  
y/b z/c)
Cu1 1/2 1/2 1/2  
Cu2 1/2 0 0
S1   0.12527 -0.01315 0.28634
O1   0.64893 -0.28899 0.11748
O2   0.65182  0.18247 0.07346
O3   1.12844 -0.43479 0.12435
O4   0.20280  0.46556 0.59358
O5  -0.11557 -0.04315 0.30159
O6   0.13680  0.13959 0.37259
O7   0.29749 -0.24436 0.31756
O8   0.17223  0.09305 0.15153
O9   0.48076  0.75491 0.58387

CIF

Crystallographic Information File

Fractional Coordinates - CuSO4.5H2O

Source: Frank Hoffmann



Systematization of Crystal Structures

1. Step: Crystal Systems
metric + symmetry of the UC

7

2. Step: Bravais lattices
primitive + centered

14

3. Step: Crystal classes
crystallographic PG 32



Symmetry operation (SO)

 is a (geometrical) reorganization/transformation, which maps an object onto itself

 by this operation a congruent image of the motif is generated, i.e. an image which is 
indistinguishable of the starting point

90°

indistinguishable

Symmetry Operation and Symmetry Element

a = b = c
α = β = γ = 90°

a = b = c
α = β = γ = 90°

Source: Frank Hoffmann



90°

indistinguishable

axis of rotation 360 °/ 90 ° = 4 4-fold axis of rotation

Symmetry element (SE)

 is the geometrical object (point, line, plane) on which the SO is carried out

Symmetry Operation and Symmetry Element

a = b = c
α = β = γ = 90°

a = b = c
α = β = γ = 90°

Source: Frank Hoffmann



90°

indistinguishable

axis of rotation 360 °/ 90 ° = 4 4-fold axis of rotation

Symmetry element (SE)

 is the geometrical object (point, line, plane) on which the SO is carried out

 it comprises at least all invariant spatial points (fixed points) of the operation

Symmetry Operation and Symmetry Element

a = b = c
α = β = γ = 90°

a = b = c
α = β = γ = 90°

Source: Frank Hoffmann



180°

indistinguishable

axis of rotation 360 °/ 180 ° = 2 2-fold axis of rotation

a = b = c
α = β = γ = 90°

Symmetry element (SE)

 is the geometrical object (point, line, plane) on which the SO is carried out

 it comprises at least all invariant spatial points (fixed points) of the operation

 usually on one SE several different SO can be carried out

Symmetry Operation and Symmetry Element

a = b = c
α = β = γ = 90°

Source: Frank Hoffmann



Symmetry elements of macroscopic objects

1. Identity

2. Mirror plane

3. Axis of rotation

4. Center of inversion

5. Rotoinversion axis

identity
1-fold axis of rotation  

(rotation by 360°)

symbol E

even the most asymmetric  
objects have at least one SE

Symmetry concerning macroscopic object

Source: Frank Hoffmann



mirror plane

 also called ‘line symmetry’ or ‘reflection symmetry’ or ‘bilateral symmetry’

 an object which does not change upon undergoing a reflection has mirror symmetry,  it is mirror symmetric

 In 2D there is a line of symmetry or mirror line, in 3D a plane of symmetry or mirror plane

symbol m

mm

Mirror Symmetry

Source: Frank Hoffmann



∞-fold axis of rotation

SO = Rotation by 360° / n SE = n-fold axis of rotation symbol n (1, 2, 3…)

5-fold axis of rotation3-fold axis of rotation

120 ° 120 °

120 °

3
3-fold axis of rotation

3 5

72 °120 °

Rotational Symmetry
 single objects can have rotational symmetry of any order

 rotational symmetry may or may not be combined with mirror symmetry



Axis of Rotation…

 rotation around a axis (= fixed points of  
the rotation) with an angle of rotationα

 after n rotations by α the starting  
position is reached

 n = order of the axis

… in crystallography

n = 2, 3, 4, 6

2-fold

3-fold

4-fold

6-fold

α
180°

120°

90°

60°

 the number of crystal classes is limited to 32  
because of the restrictions of rotational  
symmetry in crystals

Axis of Rotation

Source: Frank Hoffmann



5-fold axis of rotation 
1 unique mirror plane

5m

6-fold axis of rotation
2 unique mirror planes

6mm mm

 single objects can have rotational symmetry of any order

 rotational symmetry may or may not be combined with mirror symmetry

Mirror + Rotational Symmetry

Source: Frank Hoffmann



180 °

symbol i or 1 (“one-bar”) x, y, z -x, -y, -z

 also called ‘origin symmetry’ or ‘center of symmetry’

 there is always a matching part, which has the same distance from a central 
point  but in the opposite direction

 in the plane it is identical with rotational symmetry of order 2
(2-fold axis of rotation)

Inversion symmetry

Source: Frank Hoffmann



 a rotoinversion is a combined SO, where two transformations have to be carried out

(1) rotation around 360°/n

(2) immediately followed by an inversion at a center of symmetry, which lies on the  rotoinversion
axis

Tetrahedron

4-fold rotoinversion axis 4 = 4 + 1symbol

Rotation + Inversions Symmetry

i
90°



1

2

1 = i

2

1

2 = m

 odd rotoinversions possess automatically a center of inversion

3 = 3 + 1

1
3

5

2
4

6

Roto-inversion axes of order 1, 2, and 3



Rotoinversion axes of order 4 and 6

1 3

2

4

1

3

2

4

6

= 3 ⊥ m4 = 4 + 1 6 = 6 + 1

 even rotoinversions contain automatically an axis of rotation of the half order  (4-bar contains a 2-fold, 
and 6-bar contains a 3-fold axis of rotation)

 if the order n is even, but not divisible by 4, then there is automatically a  mirror plane perpendicular to 
the rotoinversion axis (holds for 2-bar and 6-bar)

Roto-inversion axes of order 4 and 6

5



Crystal Classes
 everyday objects can have any symmetry, and  

symmetry elements can be combined, in principle,  
arbitrarily

 the symmetry of crystals – i.e. the symmetry of the external  
shape of crystals – is limited

 they can be classified into 32 classes only
 the symmetry has to be compatible with the repeating  

pattern of the crystal lattice

‘infinite’ number of symmetry classes 32 symmetry classes (point groups)

see later



1st Example no m
no n

b
a

c

crystal class 1

i

pinacoidal

plagioclase

microcline (potassium feldspar),  
turquoise, and wollastonite

Classify Crystal into Classes

Source: Frank Hoffmann



Classify Crystals into Classes

2nd Example

Classify Crystal into Classes

Source: Frank Hoffmann



2nd Example one m
one 2 perpendicular to m

2
m

“perpendicular to”

speak: ‘2 over m’

m

2

m

2

http://webmineral.com/data/Gypsum.shtml

2/mcrystal class

Classify Crystal into Classes

Source: Frank Hoffmann

http://webmineral.com/data/Gypsum.shtml


2nd Example
2
m

“perpendicular to”

speak: ‘2 over m’

2/m

there is also a center of inversion,  
however this is not a ‘unique’ SE

it is automatically generated by 2/m!

i

crystal class

one m
one 2 perpendicular to m

http://webmineral.com/data/Gypsum.shtml

Classify Crystal into Classes

Source: Frank Hoffmann

http://webmineral.com/data/Gypsum.shtml


2nd Example one m
one 2 perpendicular to m

prismatic

2
m

“perpendicular to”

speak: ‘2 over m’

CaSO4 · 2 H2O
Gypsum

azurite, chlorite, clinopyroxene,
epidote, malachite, kaolinite,  
orthoclase, and talchttp://webmineral.com/data/Gypsum.shtml

2/mcrystal class

Classify Crystal into Classes

Source: Frank Hoffmann

http://webmineral.com/data/Gypsum.shtml


one m
one 2 perpendicular to m

prismatic

2
m

“perpendicular to”

speak: ‘2 over m’

2nd Example

azurite, chlorite, clinopyroxene,
epidote, malachite, kaolinite,  
orthoclase, and talchttp://webmineral.com/data/Gypsum.shtml

2/mcrystal class

Fe3(PO4)2 · 8H2O
Vivianite

Classify Crystal into Classes

Source: Frank Hoffmann

http://webmineral.com/data/Gypsum.shtml


3rd Example

c

b
a

Classify Crystal into Classes

Source: Frank Hoffmann



3rd Example

c

b
a

Introducing viewing directions, here a b c

Classify Crystal into Classes

Source: Frank Hoffmann



m

3rd Example

c

b
a

Classify Crystal into Classes

Source: Frank Hoffmann



MgNH4PO4 · 6 H2O

Struvite

m

m2 crystal class

3rd Example

(ortho)rhombic-pyramidal

a
b

c

by convention

http://webmineral.com/data/Struvite.shtml

symmetry elements 2 m m
m m 2
a  b c

Classify Crystal into Classes

Source: Frank Hoffmann

http://webmineral.com/data/Struvite.shtml


m

m2 crystal class mm2

3rd Example

Zn4Si2O7(OH)2 · H2O

Hemimorphite
b

a

c

(ortho)rhombic-pyramidal

Classify Crystal into Classes

Source: Frank Hoffmann



4th Example

a

c

b
120°

viewing directions  
(hexagonal crystal system)

c a [210]

Classify Crystal into Classes

Source: Frank Hoffmann



[210]

[110]

<210> = [210],

[110],

[120]

[120]

2,1

-1,1

-1,-2

a  
[100]

b (=a) [010]

Lattice Directions

Source: Frank Hoffmann



4th Example

a

c

b
120°

6 viewing directions  
(hexagonal crystal system)

c a [210]

6

Classify Crystal into Classes

Source: Frank Hoffmann



4th Example

a

c

b
120°

6

m

viewing directions  
(hexagonal crystal system)

c a [210]

6 
m m

m

Classify Crystal into Classes

Source: Frank Hoffmann



4th Example

a

c

b
120°

6

m

m
viewing directions  

(hexagonal crystal system)

c a [210]

6 
m m m

Classify Crystal into Classes

Source: Frank Hoffmann



4th Example

a
b

c

120° (Mg, Graphite, Nickeline)

CuS  
Covellite

6/mmmcrystal class

dihexagonal-dipyramidal

Classify Crystal into Classes



1. Step: Crystal systems
metric + symmetry of the UC

7

2. Step: Bravais lattices
primitive + centered

14

3. Step: Crystal classes
crystallographic PG 32

4. Step: Space groups
complete symmetry 230

Systematization of Crystal Structures



Translation – Glide – Screw axis

a/2

a/2

21 ( Screw )

1/2 lattice (glide)

Source: Frank Hoffmann



 There are three symmetry elements, which have a translational component

1. Translation (in units of whole unit cells along the lattice vectors)

translation

repeating unit (unit cell)

mirror plane

m

translation repeating unit (unit cell)

Translational Symmetry

Source: Frank Hoffmann



glide line

(a) reflection at a plane / line
(b) translation (usually by 1/2 of the unit cell)

g

glide reflection

Glide Planes/Lines

Source: Frank Hoffmann



(a) reflection at a plane / line
(b) translation (usually by 1/2 of the unit cell)

g

glide reflection

translation  
reflection

Glide Planes/Lines

Source: Frank Hoffmann



(a) reflection at a plane / line
(b) translation (usually by 1/2 of the unit cell)

g

glide reflection

translation  
reflection

 There are three symmetry elements, which have a translational component

1. Translations (in units of whole unit cells along the lattice vectors)

2. Glide planes / glide axes

3. Screw axes

Kaiser's spotted newt

Glide Planes/Lines

Source: Frank Hoffmann



 plus two symbols indicating mirrors (m), glides (g)
perpendicular to a) the x-axis and b) the y-axis

p2mg

symmetry elements

Bravais type

glide plane  
mirror plane

2-fold axis of rotation

 in full notation always 4 symbols

 begins with p or c according to the Bravais lattice type

 followed by the digit n indicating the rotational  
symmetry order

 if there are no such operators a (1)
is denoted

Notation of Plane Groups
 Notation of Wallpaper groups

Source: Frank Hoffmann



 Full and Short Notation of Wallpaper groups

p2mgthe short notation drops digits n or a m 
that  can be deduced, so long as that leaves 
no  confusion with another plane group

Full p111 p1m1 p1g1 c1m1 p211 p2mm p2mg p2gg c2mm p311 p3m1 p31m p411 p4mm p4gm p611 p6mm

Short p1 pm pg cm p2 pmm pmg pgg cmm p3 p3m1 p31m p4 p4m p4g p6 p6m

Optional assignment: Overlay this pattern  
with the unit cell and the respective  
graphical symbols of the symmetry elements  
at their correct positions within this pattern!

Notation of Plane Groups



Glade Plane in Crystals

(a) reflection at a plane
(b) translation by 1/2 or 1/4 of the unit cell

Symmetry operation (SO)

glide reflection

Symmetry element (SE)

glide plane

a, b, c, n, d, e

characters indicate
the translation direction

Source: Frank Hoffmann



 glide plane a

 mirror plane runs parallel to the  
drawing layer

 additional symbol that indicates the  
direction of the transition

+z

b

a

translation direction = a x + ½

Glade Plane - a

Source: Frank Hoffmann



 glide plane a

 mirror plane runs parallel to the  
drawing layer

 additional symbol that indicates the  
direction of the transition

- z

b

a

translation direction = a x + ½

Glade Plane - a

Source: Frank Hoffmann



 glide plane a

 mirror plane runs parallel to the  
drawing layer

 additional symbol that indicates the  
direction of the transition

- z

b

a

translation direction = a x + ½

Glade Plane - a

Source: Frank Hoffmann



 glide plane b

 mirror plane perpendicular to the  
drawing layer

+z

b

a

translation direction = b y + ½

Glade Plane - b

Source: Frank Hoffmann



 glide plane b

 mirror plane perpendicular to the  
drawing layer

+ z

b

a

translation direction = b y + ½

Glade Plane - b

Source: Frank Hoffmann



 glide plane b

 mirror plane perpendicular to the  
drawing layer

+ z

b

a

translation direction = b y + ½

Glade Plane - b

Source: Frank Hoffmann



 glide plane c

 mirror plane perpendicular to the  
drawing layer

b

a

translation direction = c z + ½

z

Glade Plane - c

Source: Frank Hoffmann



 glide plane c

 mirror plane perpendicular to the  
drawing layer

b

a

translation direction = c z + ½

z

Glade Plane - c

Source: Frank Hoffmann



 glide plane c

 mirror plane perpendicular to the  
drawing layer

b

a

translation direction = c z + ½

z + ½

Glade Plane - c

Source: Frank Hoffmann



Glide Planes in Crystals

(a) reflection at a plane
(b) translation by 1/2 or 1/4 of the unit cell

Symmetry operation (SO)

glide reflection

Symmetry element (SE)

glide plane

a, b, c, n, d, e

Glade Plane in Crystals

Source: Frank Hoffmann



 glide plane n

b

a

translation direction = diagonal

z

z

y + ½  
z + ½ i.e. in the (b,c) plane

mirror plane perpendicular to the
drawing layer

diagonal Glade Plane - n

Source: Frank Hoffmann



 glide plane n

b

a

translation direction = diagonal

z

y + ½  
z + ½ i.e. in the (b,c) plane

z + ½

mirror plane perpendicular to the
drawing layer

diagonal Glade Plane - n

Source: Frank Hoffmann



 glide plane n

b

a

translation direction = diagonal

z

z + ½

x + ½  
y + ½

i.e. in the (a,b) plane

z

y + ½  
z + ½ i.e. in the (b,c) plane

mirror plane perpendicular to the
drawing layer

mirror plane runs parallel to the
drawing layer

diagonal Glade Plane - n



 glide plane n

b

a

translation direction = diagonal

z

z + ½

-z

x + ½  
y + ½

i.e. in the (a,b) plane
y + ½  
z + ½ i.e. in the (b,c) plane

mirror plane perpendicular to the
drawing layer

mirror plane runs parallel to the
drawing layer

diagonal Glade Plane - n



 glide plane n

b

a

translation direction = diagonal

z

z + ½

-z

x + ½  
y + ½

i.e. in the (a,b) plane
y + ½  
z + ½ i.e. in the (b,c) plane

mirror plane perpendicular to the
drawing layer

mirror plane runs parallel to the
drawing layer

diagonal Glade Plane - n



 glide plane d

 mirror plane perpendicular to the  
drawing layer

b

a

translation direction = diagonal as in diamond

z

y + ¼ (!)
z + ¼ (!)

i.e. in the (b,c) plane

diamond like Glade Plane - d

Source: Frank Hoffmann



 glide plane d

 mirror plane perpendicular to the  
drawing layer

b

a

translation direction = diagonal as in diamond
y + ¼ (!)
z + ¼ (!)

i.e. in the (b,c) plane

z

z

diamond like Glade Plane - d

Source: Frank Hoffmann



 glide plane d

 mirror plane perpendicular to the  
drawing layer

b

a

translation direction = diagonal as in diamond
y + ¼ (!)
z + ¼ (!)

z

z + 1/4

i.e. in the (b,c) plane

diamond like Glade Plane - d

Source: Frank Hoffmann



 glide plane d

 mirror plane perpendicular to the  
drawing layer

b

a

translation direction = diagonal as in diamond

z z + 1/2

z + 1/4

y + ¼ (!)
z + ¼ (!)

i.e. in the (b,c) plane

diamond like Glade Plane - d

Source: Frank Hoffmann



 glide plane d

 mirror plane perpendicular to the  
drawing layer

b

a

translation direction = diagonal as in diamond

z z + 1/2

z + 1/4 z + 3/4

y + ¼ (!)
z + ¼ (!)

i.e. in the (b,c) plane

diamond like Glade Plane - d

Source: Frank Hoffmann



 glide plane e

 mirror plane perpendicular to the  
drawing layer

 there are two glide planes at once  
with two glide directions  
perpendicular to each other

b

a

translation direction = b and c

z

i.e. in the (b,c) plane
y + ½
z + ½

b

these are two glide planes,
both equally oriented!

Double Glide Plane - e

Source: Frank Hoffmann



 glide plane e

 mirror plane perpendicular to the  
drawing layer

 there are two glide planes at once  
with two glide directions  
perpendicular to each other

b

a

translation direction = b and c

z

i.e. in the (b,c) plane
y + ½
z + ½

b

z

these are two glide planes,
both equally oriented!

Double Glide Plane - e

Source: Frank Hoffmann



 glide plane e

 mirror plane perpendicular to the  
drawing layer

 there are two glide planes at once  
with two glide directions  
perpendicular to each other

b

a

translation direction = b and c

z

i.e. in the (b,c) plane
y + ½
z + ½

c

zz + 1/2

these are two glide planes,
both equally oriented!

Double Glide Plane - e

Source: Frank Hoffmann



 glide plane e

 mirror plane perpendicular to the  
drawing layer

 there are two glide planes at once  
with two glide directions  
perpendicular to each other

b

a

translation direction = b and c

i.e. in the (b,c) plane
y + ½
z + ½

z

c

z + 1/2

z + 1/2 z

these are two glide planes,
both equally oriented!

Double Glide Plane - e

Source: Frank Hoffmann



 glide plane e

 mirror plane perpendicular to the  
drawing layer

 there are two glide planes at once  
with two glide directions  
perpendicular to each other

b

a

translation direction = b and c

z

z + 1/2

z + 1/2

i.e. in the (b,c) plane
y + ½
z + ½

b
c c

z

these are two glide planes,
both equally oriented!

Double Glide Plane - e

Source: Frank Hoffmann



B-DNA
double helix

double spiral staircase
http://www.olafureliasson.net/

climber plant screw

Double Helices

Source: Frank Hoffmann

http://www.olafureliasson.net/


Characteristics of Helices

screw/helix axis

pitch
distance of a  
whole turn

Source: Frank Hoffmann



Characteristics of Helices

handedness

image mirror image

chiral objects

with the viewing direction  along axis 
of the helix…

…if a clockwise screwing motion  moves 
the helix away from the  observer, then it is 
called a right- handed helix

…if a counter-clockwise screwing  motion 
moves the helix away  from the observer, 
then it is  called a left-handed helix

Source: Frank Hoffmann



screw rotation

Symmetry operation (SO) Symmetry element (SE)

screw axis

(a) rotation around the axis
(b) translation parallel to the axis

Screw Axes

Source: Frank Hoffmann



screw axisscrew axis

continuous
discrete atoms

Characteristics of Helices

rotational part limited

rotational order is restricted to 1 to 4 and 6!rotational order = ∞

Source: Frank Hoffmann



a

translation along
the lattice vectors

b

Screw Axes in Crystal Structure

Source: Frank Hoffmann



(a) rotation by 360°/6 = 60°
(b) translation by 1/6 of the unit cell

6-fold screw axis 61 translational component = 1/6

screw axis

Screw Axes in Crystal Structure

Source: Frank Hoffmann



 Screw Axis nm ; where m < n

t

α

= translation element = m / n

= rotation angle

right-handed  
coordinate system

t
α

rotation by an angle α of 360°/n

n = order of the axis = 360° / n

translation of m/n of the whole unit cell  
parallel to the screw axis

Screw Axes in Crystal Structure

Source: Frank Hoffmann



 Screw Axis nm

rotation by 360°/3 = 120°

translation of m/n, i.e. 2/3 of the whole unit  
cell parallel to the screw axis

t

α

= translation element = m / n

= rotation angle

; where m < n

a 32 screw axis (n=3, m=2) means

right-handed  
coordinate system

t
α

the possible screw axes are 21, 31, 41, 42, 61, 62, and 63, and the enantiomorphous 32, 43, 64, and 65.

Screw Axes in Crystal Structure

Source: Frank Hoffmann



b

a

31 screwaxis

trigonal crystal system

space group P3121

Screw Axes in Tellurium

Source: Frank Hoffmann



order n m t symbol

2 0 0 2
1 1/2 21

2 1 2

20 21

nm

2-fold Screw Axes

Source: Frank Hoffmann



order n

3 30

m t symbol

0

1 1/3
2 2/3

31

32

3 1 3

30 31 32

nm

image mirror
image

3-fold Screw Axes

Source: Frank Hoffmann



40 41 42 43

4-fold Screw Axes



60 61 62 6365

m m

64

6-fold Screw Axes



1. Step: Crystal systems
metric + symmetry of the UC

7

2. Step: Bravais lattices
primitive + centered

14

3. Step: Crystal classes
crystallographic PG 32

4. Step: Space groups
complete symmetry 230

Systematization of Crystal Structures



14

Bravais lattices
32

Point groups
screw and glide  

symmetry

with

Combination of

and

Space groups

gives
230

dimensions 1 2 3 4 5 6

no. of ‘space’ groups 2 17 230 4894 ~220 k ~29 mill

Space Groups

Source: Frank Hoffmann



International Tables for Crystallography  
Volume A: Space-group symmetry

International Tables for Crystallography



Nomenclature

P c a 21 (orthorhombic)

21 screw axis || c

glide plane a ⊥ b

glide plane c ⊥ a

Bravais type

symmetry elements with respect to 3 given viewing directions

Space group

Set of symmetry elements (and respective operations), which completely describes  
the spatial arrangement of a 3D periodic pattern.

‘Generators’

Definition and Nomenclature of Space Groups

Source: Frank Hoffmann



crystal system viewing directions

triclinic

monoclinic b
orthorhombic a b c

tetragonal c a [110]
trigonal c a [210]

hexagonal c a [210]
cubic a [111] [110]

a = b

a = b  

a = b

 monoclinic: determined by convention

 tetragonal, trigonal, hexagonal: rotational axis of highest order is by definition || to the c-axis and the first viewing direction

 rule of thumb: look for something new!

Crystallographic Viewing Directions

Source: Frank Hoffmann



P 21/nspace group crystal class 2/m

 Derivation of the crystal class from the space group

1) Leave out the Bravais type

2) Convert all SEs with translational components into their respective SEs without translation symmetry

Glide planes are converted into simple mirror planes

Screw Axes are converted into simple axes of rotation

3) Axes of rotation, rotoinversion axes and mirror planes remain unchanged

Space groups to Point groups (Crystal class)



c

b
a

tetragonal

a = b

α = β = γ = 90°

c a [110]

Crystal system – Crystal class – Space group

Source: Frank Hoffmann



c

b
a

tetragonal

a = b

α = β = γ = 90°

c a [110]

Crystal system – Crystal class – Space group

Source: Frank Hoffmann



tetragonal

a = b

α = β = γ = 90°

c a [110]

c

b
a

Crystal system – Crystal class – Space group

Source: Frank Hoffmann



b
a

c

tetragonal

a = b

α = β = γ = 90°

c a [110]

4/mmm  
P4/mmm

c a [110]

Crystal system – Crystal class – Space group

Source: Frank Hoffmann



b
a

c

tetragonal

a = b

α = β = γ = 90°

c a [110]

4mm
I4mm

c a [110]

Crystal system – Crystal class – Space group

Source: Frank Hoffmann



b
a

c

tetragonal

a = b

α = β = γ = 90°

c a [110]

4mm
P4mm

c a [110]

Crystal system – Crystal class – Space group

Source: Frank Hoffmann



International Tables for Crystallography  
Volume A: Space-group symmetry

http://img.chem.ucl.ac.uk/sgp/mainmenu.htm

International Table for Crystallography

Source: Frank Hoffmann

http://img.chem.ucl.ac.uk/sgp/mainmenu.htm


 Systematic listing of the 17 plane groups and 230 space groups

 Space group symbol in short and full notation as well as an unique #

 Indication of the crystal system and the crystal class in both systems of
nomenclature (H.-M. and Schoenflies)

 Diagrams of the position of the SEs

 General position diagram

 Listing of all SOs as coordination transformations

 Multiplicity, Wyckoff letters, Site symmetry

 …and some more (“incomprehensible”) things

group theory / X-ray diffraction

International Table for Crystallography

Source: Frank Hoffmann



Header

Space group Pmm2

Source: Frank Hoffmann



Crystal class  

Full symbol
C mm 2 Crystal system OrthorhombicShort symbol Pmm2

Number No. 25

1
2v

Patterson Symmetry Pm m mPmm 2

Schoenflies H.-M.

Space group Pmm2 - Header

Source: Frank Hoffmann



Space group Pmm2

Source: Frank Hoffmann



b

a

horizontal mirror planes

Space group Pmm2 - Diagram of the Symmetry elements 

Source: Frank Hoffmann



b

a
vertical mirror planes

Space group Pmm2 - Diagram of the Symmetry elements 

Source: Frank Hoffmann



b

a

2-fold axes of rotation

Space group Pmm2 - Diagram of the Symmetry elements 

Source: Frank Hoffmann



Space group Pmm2

Source: Frank Hoffmann
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+
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+,

Space group Pmm2 – General Position Diagram

Source: Frank Hoffmann



Space group Pmm2 – General Position Diagram

Source: Frank Hoffmann



an atom on a general position
(does not sit on a SE)

Space group Pmm2 – General Position Diagram

Source: Frank Hoffmann



Space group Pmm2 – General Position Diagram

Source: Frank Hoffmann



Space group Pmm2 – General Position Diagram

Source: Frank Hoffmann



Space group Pmm2 – General Position Diagram

Source: Frank Hoffmann



Space group Pmm2 – General Position Diagram

Source: Frank Hoffmann



Space group Pmm2 – General Position Diagram

Source: Frank Hoffmann



Space group Pmm2 – General Position Diagram

Source: Frank Hoffmann



Space group Pmm2 – General Position Diagram

Source: Frank Hoffmann



Space group Pmm2 – General Position Diagram

Source: Frank Hoffmann



Space group Pmm2 – General Position Diagram

Source: Frank Hoffmann



Space group Pmm2 – General Position Diagram

Source: Frank Hoffmann



Space group Pmm2 – General Position Diagram

Source: Frank Hoffmann



+
+ +

+
+ + +

+
+

,

,
, +

, +, + ,
, +

+

, +
+,

+
position along the c-direction  
above the projection plane

image and mirror image

Space group Pmm2 – General Position Diagram

Source: Frank Hoffmann



+
+ +

+
+ + +

+
+

, image and mirror image

,
, +

, +, + ,
, +

+

, +
+,

+
position along the c-direction  
above the projection plane

Space group Pmm2 – General Position Diagram

Source: Frank Hoffmann



+
+ +

+
+ + +

+
+

,

,
, +

, +, + ,
, +

+

, +
+,

+
position along the c-direction  
above the projection plane

Space group Pmm2 – General Position Diagram

image and mirror image
Of chiral object Source: Frank Hoffmann



230 Space Group

 When talking about crystal structures, people will usually 
report the space group of a crystal

 Space groups are made up from
 point symmetry (not translational)
 lattice symmetry (translational)
 glide and/or screw axes (some translational component)

7 crystal 
systems

14 Bravais 
lattices

32 point 
groups

230 space 
groups



Summary

Source: Frank Hoffmann



Schoenflies vs. Hermann-Mauguin

Source: Frank Hoffmann



Rotoinversions vs. Rotary reflections

Source: Frank Hoffmann



Roto-inversions vs. Rotary reflections

Source: Frank Hoffmann



International Tables for Crystallography – Space group P2 1 /c

Source: Frank Hoffmann



Space group P2 1 /c – Header

Crystal class  

Full symbol

C 2/mShort symbol P21/c
Number No. 14

5
2h Crystal system Monoclinic

Patterson Symmetry P12/ m1P121 /c1

UNIQUE AXIS b, CELL CHOICE 1

settings

P21/c – standard space group

P21/a

P21/b non-standard space group variants of P21/c  

P21/n Source: Frank Hoffmann



Space group P2 1 /c – Header

primitive lattice

a 21 screw axis parallel to the  
b direction and a glide plane c  
perpendicular to the b  
directionno symmetry element  

in the a direction

Full symbol

a b c

P121 /c1

viewing direction

no symmetry element
in the c direction

Source: Frank Hoffmann



International Tables for Crystallography – Space group P2 1 /c

Source: Frank Hoffmann



Diagram of the Symmetry elements – Space group P2 1 /c

Source: Frank Hoffmann



Diagram of the Symmetry elements – Space group P2 1 /c

21 screw axes

0 a

c

glide plane perpendicular  
to the b direction with  
translation direction c

1
4

height along
the b direction

Source: Frank Hoffmann



0 a

c

centres of inversion

1
4

Diagram of the Symmetry elements – Space group P2 1 /c

Source: Frank Hoffmann



International Tables for Crystallography – Space group P2 1 /c

Source: Frank Hoffmann



General Position Diagram – Space group P2 1 /c

image and mirror image,
+ – above / below  

the projection plane

Source: Frank Hoffmann



General Position Diagram – Space group P2 1 /c

, image and mirror image

+ – above / below  
the projection plane

+

– ,

Source: Frank Hoffmann



+

– ,

, ½

½

½ + = ½ + y = y + ½
½ – = ½ – y = -y + ½

General Position Diagram – Space group P2 1 /c

, image and mirror image

+ – above / below  
the projection plane

Source: Frank Hoffmann



+

– ,

, ½

½

–

,+

½

, ½

General Position Diagram – Space group P2 1 /c

, image and mirror image

+ – above / below  
the projection plane

Source: Frank Hoffmann



+

– ,

½

+

+

– ,

½

, ½

+

– ,– ,
, ½

general multiplicity (here: 4)

General Position Diagram – Space group P2 1 /c

, image and mirror image

+ – above / below  
the projection plane

Source: Frank Hoffmann



½

+

+ +

– , – ,

½

, ½

+

– ,– ,
, ½

1
4

General Position Diagram – Space group P2 1 /c

, image and mirror image

+ – above / below  
the projection plane

Source: Frank Hoffmann



+

½

½
,

– ,

 by pure translations of the unit cell in all 3  
spatial directions the whole crystal is build

asymmetric unit: is the set of objects/atoms,  
which is sufficient to describe all other  
positions, the complete content of one unit cell,  
when we apply the SOs of the space group

 however, the SEs of the space group act also on
atoms inside the unit cell, they will be multiplied

asymmetric unit: must not have any  
internal symmetry

1
4

Asymmetric Unit – Space group P2 1 /c

Source: Frank Hoffmann





λ

The ‘slit’ scatters light and become a point source

d

Single Slit Diffraction



λ

d

Single Slit Diffraction



λ

d

m=2

m=1

m=0

m= -1

m= -2

Double Slit Diffraction



m=2

m=1

m=0

m= -1

m= -2

λ

Multi Slit Diffraction



λ

d

x = d sinθ = λ

Constructive Interference



λ

d

x = d sinθ = λ

Destructive Interference



λ

d

Diffraction by One Atom



λ

m=2

m=1

m=0

m= -1

m= -2

d

Diffraction by Two Atom



λ

dhkl

Diffraction by Planes of Atom

2θ
θ

wave particle• Path difference Δ = 2𝑥𝑥 => phase shift
• Constructive interference if Δ = nλ
• Criterion for constructive interference: Δ = 2𝑑𝑑ℎ𝑘𝑘𝑏𝑏 sin(𝜃𝜃) = 𝑛𝑛𝑛𝑛

sin(𝜃𝜃) =
𝑥𝑥
𝑑𝑑ℎ𝑘𝑘𝑏𝑏



dhkl

λ

Diffraction by Planes of Atom

2θ
θ

wave particle



20 30 40 50 60 70
2theta (deg)

Surface Normal

𝑸𝑸𝒛𝒛 = 𝑲𝑲𝒇𝒇 − 𝑲𝑲𝒊𝒊

𝐾𝐾𝑓𝑓𝐾𝐾𝑖𝑖

𝑸𝑸𝒛𝒛

Lattice planes

Large d

(001)

Focusing Circle

𝑛𝑛𝑛𝑛 = 2𝒅𝒅ℎ𝑘𝑘𝑏𝑏 . 𝑠𝑠𝑠𝑠𝑛𝑛𝜽𝜽Bragg’s law:

Bragg-Brentano Geometry



20 30 40 50 60 70
2theta (deg)

Surface Normal

Lattice planes

Medium d

(002)

𝑛𝑛𝑛𝑛 = 2𝒅𝒅ℎ𝑘𝑘𝑏𝑏 . 𝑠𝑠𝑠𝑠𝑛𝑛𝜽𝜽Bragg’s law:

Bragg-Brentano Geometry



20 30 40 50 60 70
2theta (deg)

Surface Normal

Lattice planes

Small d

(003)

𝑛𝑛𝑛𝑛 = 2𝒅𝒅ℎ𝑘𝑘𝑏𝑏 . 𝑠𝑠𝑠𝑠𝑛𝑛𝜽𝜽Bragg’s law:

Bragg-Brentano Geometry



20 30 40 50 60 70
2theta (deg)

Focusing Circle

Surface Normal

Lattice planes
(001)

Medium d

(002)

Surface Normal

Small d

(003)

Large d

𝑛𝑛𝑛𝑛 = 2𝒅𝒅ℎ𝑘𝑘𝑏𝑏 . 𝑠𝑠𝑠𝑠𝑛𝑛𝜽𝜽Bragg’s law:

Bragg-Brentano Geometry



X-Ray
Detector

XRD Machine

Sample



a b

c

Powder Diffraction Pattern

a b

c

a b

c

a b

c



What influences the peak position and intensity
of Bragg reflections?

Example: CsCl

Cs+

Cl-aa

a

Reflection Position and Intensity



Real crystal structure CsCl a = 4.11Å,  λ=1.54Å
Calculate: d(hkl) and θhkl for the following (hkl)

hkl d θ 2θ I

(001)

(011)

(111)

(002)

Reflection Position and Intensity



d(001) = a = 4.11 Å
λ = 2𝑑𝑑 sin θRe-call Bragg equation:

θ = sin−1 λ
2𝑑𝑑

= sin−1 1.54
4.11

=10.80°

(001) Reflection



Cs+

Cl-

d(001)

(001) Reflection



The diagram shows the (001) planes scattering in phase
 The reflecting power of atoms (normally called the 

atomic scattering factor) is related to the number of 
electrons in the atom

Cs+ = 54 electrons
Cl- = 18 electrons

 the reflected beam from Cs+ atoms has an      
amplitude 3x larger than the beam from Cl- atoms

(001) Reflection



Look at the wavefront A - A of the reflected beam.
 Beams from Cl- atoms (on planes d100 apart) are in phase.
 Beams from Cs+ atoms (also on planes d100 apart) are in phase.
But, since Cs+ planes are exactly half-way between Cl- planes, 
beams  from Cs+ and Cl- planes are exactly out of phase.
 Amplitude of diffracted beam ∝ y(54 - 18) = y(36)

(y is some constant)
 Intensity = I001 ∝ y2 (36)2 = 1296y2 (Weak reflection)

(001) Reflection



This time all atoms scatter in-phase.
 Amplitude of diffracted beam ∝ y (54 + 18) = y(72)
 Intensity of diffracted beam I(002) ∝ y2 x 722 = 5184y2 (Strong 

reflection)

d(002) =
𝑎𝑎
2

=
4.11

2
= 2. 055 Å θ = 22.07°

(002) Reflection



Cs+

Cl-

d(002)

(002) Reflection



Cs+ and Cl- ions all lie in the (011) planes
Cs+ and Cl- scatter in phase

(Strong reflection)

θ = 15.34°d(011) =
𝑎𝑎
2

=
4.11

2
= 2. 91 Å

I(011) ∝ 𝑦𝑦2(54 + 18)2= 5184𝑦𝑦2

(002) Reflection



Cl- ions lie in (111) planes and d(111) apart. Cl- ions scatter in phase
Cs+ ions lie mid-way between Cl- planes. Cl+ ions scatter out of phase

(Weak reflection)

d(111) =
𝑎𝑎
3

=
4.11

3
= 2. 373 Å θ = 18.94°

I(111) ∝ 𝑦𝑦2(54 − 18)2= 1296𝑦𝑦2

(111) Reflection



To summarize:

from lattice from ‘building block’

Crystal Structure

hkl d θ 2θ I remark
100 4.11 10.84 21.60 1296 Weak
110 2.91 15.34 30.69 5184 Strong
111 2.373 18.94 37.88 1296 Weak
200 2.055 22.07 44.01 5184 Strong

Reflections



CsCl Diffraction Pattern

Multiplicity not taking into account



NaCl - Sodium Chloride

A (not quite so) Simple Crystal Structure

Cl-

Na+



Reflections

NaCl (FCC)

d(100)

d(200)

Top View
Cl-

Na+

 (100) absent completely
 (200) strong
 (110) absent completely
 (220) strong



(111) reflection

Cl-

Na+



Cl- atoms lie in (111)planes
Na+ atoms lie in between
I ∝ A2(18-8)2 = 100 A2

= (111) is quite weak
Cl- atoms lie in (222)planes
Na+ atoms lie in (222)planes
I ∝ A2 (18+8)2 = 262 A2

= (222) is quite strong

Scatter out of phase

Scatter in phase  

(111) reflection



NaCl Diffraction Pattern

Multiplicity not taking into account



Summary

The diffraction pattern is like a finger print of the 

crystal structure:

 d values reflect the unit cell parameters (grid)

 intensities reflect the atoms/molecules (building blocks)



002

001 c

100

200

400
300

003

004

a

101

202

Real Space



c*

a*

001 002 003 004

101 102 103 104

201 202 203 204200

100

0

Reciprocal Space

Systematic presence

Systematic absence

Weak reflection

h0l = 2n
h+l = 2n

𝑛𝑛 = 2𝑑𝑑ℎ𝑘𝑘𝑏𝑏𝑠𝑠𝑠𝑠𝑛𝑛𝜃𝜃

𝑑𝑑ℎ𝑘𝑘𝑏𝑏∗ = 1/𝑑𝑑ℎ𝑘𝑘𝑏𝑏

Reciprocal Space



Crystal lattice

Unit cell contents

Reciprocal lattice

Structure factor

Diffraction 
patternCrystal

Crystal Space Diffraction Space

s𝑠𝑠𝑛𝑛𝜃𝜃 = 𝝀𝝀
2𝑑𝑑ℎ𝑘𝑘𝑘𝑘

(𝑑𝑑ℎ𝑘𝑘𝑏𝑏∗ = 1/𝑑𝑑ℎ𝑘𝑘𝑏𝑏)(𝑑𝑑ℎ𝑘𝑘𝑏𝑏)

(x,y,z) (𝐴𝐴ℎ𝑘𝑘𝑏𝑏)

Real Space and Reciprocal Space



Crystal System Reciprocal Space



Peak 
No. 2𝜃𝜃 𝒔𝒔𝒊𝒊𝒔𝒔𝟐𝟐𝜽𝜽

𝒔𝒔𝒊𝒊𝒔𝒔𝟐𝟐𝜽𝜽
𝒔𝒔𝒊𝒊𝒔𝒔𝒎𝒎𝒊𝒊𝒔𝒔

𝟐𝟐 𝟐𝟐 ×
𝒔𝒔𝒊𝒊𝒔𝒔𝟐𝟐𝜽𝜽
𝒔𝒔𝒊𝒊𝒔𝒔𝒎𝒎𝒊𝒊𝒔𝒔

𝟐𝟐 𝟑𝟑 ×
𝒔𝒔𝒊𝒊𝒔𝒔𝟐𝟐𝜽𝜽
𝒔𝒔𝒊𝒊𝒔𝒔𝒎𝒎𝒊𝒊𝒔𝒔

𝟐𝟐 𝒉𝒉𝟐𝟐 + 𝒌𝒌𝟐𝟐 + 𝒍𝒍𝟐𝟐 𝒉𝒉𝒌𝒌𝒍𝒍 a (Å)

1 38.43

2 44.67

3 65.02

4 78.13

5 82.33

6 96.93

7 111.83

8 116.36

Quiz 





Professional Community & Collaborators 

Education Subcommittee

SCOPUS ID : 57202359553
Web of Science ID : O-8852-2018
ORCHID ID : 0000-0003-3782-1307
Google Scholar : R6tOeqMAAAAJ&hl
SINTA ID : 6193883

https://www.researchgate.net/profile/Maykel_Manawan https://growkudos.com/projects/crystallography-and-diffraction

https://www.scopus.com/authid/detail.uri?authorId=57202359553
https://publons.com/researcher/O-8852-2018/
https://orcid.org/0000-0003-3782-1307
https://scholar.google.co.id/citations?user=R6tOeqMAAAAJ&hl=en
https://sinta.ristekbrin.go.id/authors/detail?id=6193883&view=overview
https://www.researchgate.net/profile/Maykel_Manawan
https://growkudos.com/projects/crystallography-and-diffraction
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