

Introduction to Crystallography (Lec-01)

Dr. Maykel T. E. Manawan // UNIVERSITAS PERTAHANAN RI Dr. Frank Hoffmann // UNIVERSITY OF HAMBURG

Course Materials

Crystallography

- Symmetry & crystal system
- Bravais lattices
- Point group & space group
- Miller indices

Diffraction

- Diffraction by atom and plane of atoms
- Miller indices and diffraction
- Structure Factor
- Instrumentation
- X-ray generation
- Beam path (optics)
 - > X-ray monochromatizating
- Instrument configuration
 - Optimum setup

Sample Preparation

- Particle/Crystallite Size
- Homogeneity
- Texture/Preferred Orientation

Data Acquisition

- Angular Range
- Step Size
- Counting Time

- Qualitative Analysis (Identification)
 - Data base
 - Phase Identification
- Quantitative Analysis (Rietveld Analysis)
 - Intensity Equation
 - Profile Function
 - Instrumental function
 - Sample physical function
 - R-indices (How good is good enough)

Qualitative Analysis

- Practices with ...
 - Sample : mixture of Al2O3, CaF2, Zincite (Quantitative Analysis Round Robin (QARR) sample from International Union for Crystallography (IUCr))

Quantitative Analysis

- Practices with ...
 - Sample : mixture of Al2O3, CaF2, Zincite (QARR sample from IUCR)
- Advanced Analysis
 - Practices with PM2K (Whole Powder Pattern Modelling) => Microstructure
 - Sample : CeO2 (Size Strain Round Robin (SSRR) sample from IUCR)
 - Practices with Rietan-FP/GSAS/Fullprof/Z-Rietveld => Electron Density
 - Sample : CeO2/Fa-apatite

Software & References

Software:

EVA: https://www.bruker.com/en/products-and-Solutions/diffractometers-and-scattering-systems/x-ray-diffractometers/diffractometers-and-scattering-systems/x-ray-diffractometers/diffrac-suite-software/diffrac-topas.html

- JADE : <u>https://www.icdd.com/mdi-jade/</u>
- PDF-4+ : <u>https://www.icdd.com/pdf-4/</u>
- QualX2 : <u>http://www.ba.ic.cnr.it/softwareic/qualx/</u>
- PowCod : <u>http://www.ba.ic.cnr.it/softwareic/qualx/powcod-</u> download/
- GSAS : https://subversion.xray.aps.anl.gov/trac/EXPGUI
- Profex : <u>https://www.profex-xrd.org/?page_id=279</u>
- PM2K : <u>Matteo.Leoni@unitn.it</u>

References:

- 1. Altomare, A., Corriero, N., Cuocci, C., Falcicchio, A., Moliterni, A., Rizzi, R., QUALX2.0: a qualitative phase analysis software using the freely available database POW_COD, J. Appl. Cryst. 48 (2015) 598-603.
- 2. Larson A.C. and Von Dreele R.B., General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (2004).
- 3. Döbelin, N., Kleeberg, R., *Profex: a graphical user interface for the Rietveld refinement program BGMN, J. Appl. Cryst.* 48 (2015) 1573-1580.
- 4. Leoni M., Confente T. & Scardi P., *PM2K: a flexible program implementing Whole Powder Pattern Modelling*, Z. Kristallogr. Suppl. 23 (2006) 249-254.
- 5. Scardi P., Leoni M., *Whole Powder Pattern Modelling*, Acta Crystall. A 58 (2002) 190-200.
- Madsen, I. C., Scarlett, N. V. Y., Cranswick, L. M. D. & Lwin, T., Outcomes of the International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis: samples 1a to 1h, J. Appl. Cryst. 34 (2001) 409-426.
- Balzar, D., Audebrand, N., Daymond, M. R., Fitch, A., Hewat, A., Langford, J. I., Le Bail, A., Louer, D., Masson, O., McCowan, C. N., Popa, N. C., Stephens, P. W. & Toby, B. H., *Size–strain line-broadening analysis of the ceria round-robin sample*, J. Appl. Cryst. 37 (2004) 911-924.
- 8. Toby, B., *R factors in Rietveld analysis: How good is good enough?*, Powder Diffraction, 21 (2006) 67-70
- 9. Cullity, B. D., & Stock, S. R., *Elements of X-ray Diffraction*, Third Edition. Prentice-Hall (2001).

Crystallographer

Definition

- Definition: Crystals are *homogeneous, anisotropic* solid-state bodies, which constituents (atoms, ions, molecules...) are three-dimensional/3D *periodically ordered*.
- Solid-state bodies without such a 3D periodic order of its constituents are called amorphous (gels, glasses, wood, plastic....).

crystals have a crystal structure

Crystals – Anisotropy

- all crystals show anisotropy
 - this means that certain chemical or physical properties are different for different directions, they are directional
- anisotropic properties are, for instance
 - hardness, cleavability
 - elasticity, expansion properties

Crystals – Anisotropy

- all crystals show anisotropy
 - this means that certain chemical or physical properties are different for different directions, they are directional
- anisotropic properties are, for instance
 - hardness, cleavability
 - elasticity, expansion properties
 - electric / thermal conductivity
 - electric polarizability, magnetization

Crystals – Anisotropy

- all crystals show anisotropy
 - this means that certain chemical or physical properties are different for different directions, they are directional
- anisotropic properties are, for instance
 - hardness, cleavability
 - elasticity, expansion properties
 - electric / thermal conductivity
 - electric polarizability, magnetization

Energy and Packing

Metallic Crystal Structure

How can we stack metal atoms to minimize empty space?

Unit Cell and Packing Factor

✤ No. of atom in unit cell

Cubic: N = N_i + ^{N_f}/₂ + ^{N_c}/₈
Hexagonal: N = N_i + ^{N_f}/₂ + ^{N_c}/₆

 N_i = the number of interior atoms N_f = the number of face atoms N_c = the number of corner atoms

Atomic Packing Factor

 $APF = \frac{\text{volume of atoms in a unit cell}}{\text{total unit cell volume}} = \frac{V_S}{V_C}$

Callister & Rethwisch, 8e.

Metallic Crystal Structure

How can we stack metal atoms to minimize empty space?

Density and Material Selection

Data from Table B.1, Callister & Rethwisch, 8e.

Materials Selection in Mechanic Ashby - Chart

Phase Diagram of Fe-Fe3C

Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990.

Phase Diagram of Steel

Pearlite Structure

Steel processing as f(t)

Atomic Mechanisms of Transformation

Cooperative growth of ferrite and cementite

Soil and Soil Dynamics

Mineral Physical Properties

Talc, $Mg_3Si_4O_{10}(OH)_2$

Crystal System	: Triclinic (Anorth	nic)	
Space Group:	C-1 (2)		
Aspect:	-		
Author's Unit Ce	ell 🔻		
a: 5.290(3) Å	a: 90.46(5)°	Volume: 453.77 Å ³	c/a: 1.788
b: 9.173(5) Å	β: 98.68(5)°	Z: 2.00	a/b: 0.577
c: 9.460(5) Å	γ: 90.09(5)°	MolVol: 226.88	c/b: 1.031

Calculated Density:	2.776 g/cm ³	Melting Point:	-
Measured Density:	-	Color:	-
Structural Density:	2.775 g/cm ³		

Gypsum, CaSO₄(H₂O)₂

Crystal System:	Monoclinic		
Space Group:	I2/c (15)		
Aspect:	-		
Author's Unit Ce	▼		
a: 5.680(8) Å	a: -	Volume:	494.61 Å
b: 15.180(9) Å	β: 118.38(33)°	Z:	4.00
c: 6.520(8) Å	γ: -	MolVol:	123.65
al database		Male - B	

alculated Density: 2.312 g/cm³	Melting Point: -
leasured Density: -	Color: -
tructural Density: 2.258 g/cm³	

c/a: 1.148

a/b: 0.374 c/b: 0.430

Calcite, $CaCO_3$

		228 131
***********	-	\$\$\$ 888
Pologico apr	-	
	-	
	-	
o take o	000 00	000
00000 00000 00000		000 000
	-	and 100

Crystal System	Rhombohed	Iral		
Space Group:	R-3c (167)			
Aspect:	-			
Author's Unit Ce	ell 🔻 ———			
a: 4.989 Å	a: -	Volume:	367.78 ų	c/a: 3
b: -	β:-	Z:	6.00	a/b: -
c: 17.062 Å	γ:-	MolVol:	61.30	c/b: -
Calculated Dens	sity: 2.711 g	/cm³ M	lelting Point:	-

.420

Calculated Density: 2.711 g/cm ³	Melting Point: -
Measured Density: 2.71 g/cm³	Color: Colorless
Structural Density: -	

Fluorite, CaF₂

Crystal System:	Cubic			
Space Group:	Fm-3m (22	!5)		
Aspect:	-			
Author's Unit Ce	ell ▼			
a: 5.453 Å o	:-	Volume:	162. 15 ų	c/a: -
b:- β	: -	Z:	4.00	a/b: -
с:- у	:-	MolVol:	40.54	c/b: -

Calculated Density: 3.198 g/cm³ | Melting Point: -Measured Density: 3.18 g/cm³ | Color: Various Structural Density: -

Mineral Physical Properties

Calculated Density: 3.155 g/cm³ Melting Point: -Measured Density: 3.08 g/cm³ Color: Green, bluish green, Structural Density: - Calculated Density: 2.571 g/cm³ Melting Point: -Measured Density: 2.6 g/cm³ Color: -Structural Density: - Calculated Density: 2.649 g/cm³ Melting Point: -Measured Density: 2.66 g/cm³ Color: White Structural Density: -

Measured Density: -

Structural Density: -

Color:

Colorless

Mineral Physical Properties

Corundum, Al₂O₃

Crystal System: Rhombohedral Space Group: R-3c (167) Aspect: Author's Unit Cell V Volume: 254.81 Å3 | c/a: 2.730 a: 4.7587(1) Å a: -B: -6.00 Z: c: 12.9929(3) Å y: -MolVol: 42,47

a/b: -

c/b: -

Calculated Density: 3.987 g/cm ³	Melting Point: -
Measured Density: -	Color: -
Structural Density: -	

Moissanite, SiC

Crystal System	n: Cubic			
Space Group:	F-43m (216)		
Aspect:	-			
Author's Unit C	cell 🔻 ———			
a: 4.3589 Å	a: -	Volume:	82.82 ų	c/a: -
b: -	β: -	Z:	4.00	a/b: -
c: -	γ: -	MolVol:	20.70	c/b: -

Calculated Density: 3.216 g/cm ³	Melting Point:	-
Measured Density: -	Color:	Greenish yellow
Structural Density: -		

Diamond, C

Crystal System:	Cubic				
Space Group:	Fd-3m (227)				
Aspect:	-				
Author's Unit Ce					_
a: 3.56712(5)	a: -	Volume:	45.39 ų	c/a: -	
b: -	β:-	Z:	8.00	a/b: -	
C: -	γ:-	MolVol:	5.67	c/b: -	
Calculated Dens	sity: 3.515 g/cm ³	Meltin	g Point: -		
Measured Densi	ity: -	Color			
Structural Densi	ity: 3.515 g/cm ³	1			

Hardnes and Material Selection

Hardness of Minerals

Materials Selection in Mechanic Ashby - Chart

Crystals and Symmetry

Imagine...

- having to describe an infinite crystal with an infinite number of atoms
- or even a finite crystal, with some 10²⁰ atoms

Sounds horrible?... Well, there's **symmetry** to help you out! Instead of an infinite number of atoms, you only need to describe the contents of **one-unit cell**, the structural repeating motif...

- and life could be even easier, if there are symmetry elements present inside the unit cell!
- you only need to describe the asymmetric unit if this is the case

Without Symmetry

With Symmetry

With Symmetry

Systematization

2,3,4,6-fold axis of rotation symmetry elements

> 6-bar 1-bar inversion centre

tetrahedral holes octahedral holes coordination polyhedra

cube, prism, rhombic dodecahedron edge-connected corner-connected

morphology

variety habitus crystal faces isotypic

cubic

Miller indices

hkl values

(111) lattice plane families

quasicrystal quasi crystalline

Systematization of Crystal Structures

1. Step: Crystal Systems metric + symmetry of the UC

Task

Divide a space/volume into *identical* building blocks

use only blocks that are *geometrically regular*

use only *a single sort* of blocks

cube

Task

Divide a space/volume into *identical* building blocks

use only blocks that are *geometrically regular* use only *a single sort* of blocks

square plate

Task

Divide a space/volume into *identical* building blocks

use only blocks that are *geometrically regular* use only *a single sort* of blocks

rectangular prism

cube

Task

Divide a space/volume into *identical* building blocks

use only blocks that are *geometrically regular*

use only *a single sort* of blocks

Task

Divide a space/volume into *identical* building blocks

use only blocks that are *geometrically regular*

use only *a single sort* of blocks

voids not completely space-filling

completely space-filling but two orientations

no voids completely space-filling

Source: Frank Hoffmann

Which geometrical regular bodies fill the space completely (without gaps) by joining them together only by translation along all three spatial directions?

 A parallelepiped (epipedo = Greek for face) is a geometric body, which is confined by six parallelograms, of which two of each are congruent (superimposable) and lie in parallel planes.

The Unit Cell Definition

• The unit cell is the unit, which builds up the whole crystal structure by

repeated translations along all three spatial directions.

Unit Cell Attributes

 H_2O

2H:10

Metric

- it is defined by six cell/lattice parameters
 - the three cell/lattice constants, the lengths of the edges (a, b, and c)
 - and three angles between these edges (α , β , and γ)

Symmetry

- it contains all present symmetry elements
- defines the minimum size of the unit cell

Chemical Composition (Stoichiometry)

 the chemical content of an unit cell corresponds to the chemical composition of the considered compound (!)

7 – Crystal System

Classification of unit cells

Every imaginable crystal of the world belongs to one of altogether 7 possible crystal systems

restrictions for	cell constants	angles	symmetry
triclinic	a≠b≠c	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	1
monoclinic	a≠b≠c	$\alpha = \gamma = 90^{\circ}, \ \beta \neq 90^{\circ}$	2/m
orthorhombic	a≠b≠c	$\alpha = \beta = \gamma = 90^{\circ}$	mmm
tetragonal	a = b ≠ c	$\alpha = \beta = \gamma = 90^{\circ}$	4/mmm
trigonal	a = b ≠ c	$\alpha = \beta = 90^\circ; \gamma = 120^\circ$	3m
hexagonal) a = b ≠ c	$\alpha = \beta = 90^\circ; \gamma = 120^\circ$	6/mmm
cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	m 3 m
	restrictions for triclinic monoclinic orthorhombic tetragonal trigonal hexagonal cubic	restrictions forcell constantstriclinic $a \neq b \neq c$ monoclinic $a \neq b \neq c$ orthorhombic $a \neq b \neq c$ tetragonal $a = b \neq c$ trigonal $a = b \neq c$ hexagonal $a = b \neq c$ cubic $a = b = c$	restrictions forcell constantsanglestriclinic $a \neq b \neq c$ $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$ monoclinic $a \neq b \neq c$ $\alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$ orthorhombic $a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$ tetragonal $a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$ trigonal $a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$ hexagonal $a = b \neq c$ $\alpha = \beta = 90^{\circ}; \gamma = 120^{\circ}$ cubic $a = b = c$ $\alpha = \beta = \gamma = 90^{\circ}$

syn

α b

hexagonal crystal family

Source: Frank Hoffmann

maximum

7 – Crystal System

Source: Frank Hoffmann

Crystal Structure = Lattice + Motif/Base

crystals have a crystal structure

crystal structure = lattice + motif

Lattice

 Lattice = infinite arrangement of points in space (3D) / in the plane (2D) / on a line (1D), in which all points have the same surroundings

Lattice - Surroundings

 Lattice = infinite arrangement of points in space (3D) / in the plane (2D) / on a line (1D), in which all points have the same surrounding

()() \bigcirc

Lattice - Surroundings

 Lattice = infinite arrangement of points in space (3D) / in the plane (2D) / on a line (1D), in which all points have the same surrounding

()() \bigcirc

Lattice Points

• the lattice points are the connection points between the unit cells

- every corner of all unit cells builds a lattice point
- a lattice is characterized by its lattice vectors (translation vectors) = they *span* the unit cell
- the lattice points can be transferred into each other by these vectors

- the motif consists of the arrangement of the building blocks (atoms, molecules) of a unit cell
- the motif is *represented* by a lattice point

- the motif consists of the arrangement of the building blocks (atoms, molecules) of a unit cell
- the motif is *represented* by a lattice point

- the motif consists of the arrangement of the building blocks (atoms, molecules) of a unit cell
- the motif is *represented* by a lattice point

→ All building blocks of a crystal structure are subject to the same translation principle!

- the motif consists of the arrangement of the building blocks (atoms, molecules) of a unit cell
- the motif is *represented* by a lattice point

---- All building blocks of a crystal structure are subject to the same translation principle!

- the motif consists of the arrangement of the building blocks (atoms, molecules) of a unit cell
- the motif is *represented* by a lattice point

- ---- All building blocks of a crystal structure are subject to the same translation principle!
- → All atoms of a crystal build *congruent* crystal lattices!

Morphology of Crystals

7 crystal systems triclinic monoclinic orthorhombic tetragonal trigonal hexagonal cubic

Rock Crystal (Quartz, SiO₂)

countless forms of appearance

Morphology of Pyrite

- FeS₂
- cubic crystal system
- space group Pa3
- *a* = 5.14 Å
- FeS₆ octahedra
- S-SFe₃ tetrahedra

Correspondence Principle

Quartz (SiO₂)

macroscopically

microscopically

SiO₄ tetrahedra

Stacking Cubes – Face Development

Source: Frank Hoffmann

Facet and Habitus

same habitus (isometric) – different facet

- the total set of faces developed on a crystal is called *Facet ('costume')*
 - number and composition of faces of the outer limiting planes of a crystal
- the relative face development, i.e. their relative sizes gives rise to the *habitus*
- two crystals can have the same facet but different habitus, and they can have the same habitus but different trachts
- habitus: isometric, needle-like, plate-like, cubically, column...

Miller Indices

combination of a hexahedron (cube) and a rhombic dodecahedron Miller indices are used to name the crystal faces in a systematic manner, and are also used to denominate lattice planes.

Miller Indices

René Just Haüy (1743 – 1822)

Source: Frank Hoffmann

Hauyenite

hauyne / hauynite tecto(alumo)silicate

Na₃Ca(Si₃Al₃)O₁₂(SO₄)

René Just Haüy (1743 – 1822)

Lattice Planes

unit cell

 \overrightarrow{b}

а

- lattice planes are a family of *parallel* planes which intersects the Bravais lattice and are *periodic*
- these crystallographic planes are *fictitious* planes linking nodes, i.e. lattice points

Lattice Planes

 \overrightarrow{b}

а

- lattice planes are a family of *parallel* planes which intersects the Bravais lattice and are *periodic*
- these crystallographic planes are *fictitious* planes linking nodes, i.e. lattice points
- in principle there is an infinite number of plane families (all parallel planes of a particular type)
- Miller indices form a notation system for such planes and are expressed by three integers: (h k l)

Determining Miller Indices

 \overrightarrow{b}

а

- In how many fractions do the planes intersect the respective lattice constants a, b, (and c)?
 - If one of the indices is zero, it means that the planes do not intersect that axis (the intercept is "at infinity")

d - Spacings

- the lower the indices the higher the density of lattice points onto this plane
- the lower the indices the larger the distance *d* between two adjacent planes of a plane family

Negative Miller Indices

 if the intercepts are on the negative side of the coordinate system the indices get a bar above the number (= minus)

Source: Frank Hoffmann

Exercise - Miller Indices

Source: Frank Hoffmann

Miller Indices in 3D

Miller Indices in 3D

Source: Frank Hoffmann

Miller Indices in 3D

Miller Indices of Faces

combination of a hexahedron (cube) and a rhombic dodecahedron

the outermost planes of a crystal build the faces!

Miller Indices of Faces

combination of a hexahedron (cube) and a rhombic dodecahedron

the outermost planes of a crystal build the faces!

Source: Frank Hoffmann

Systematization of Crystal Structures

2. Step: Bravais lattices primitive + centered 14

1. Step: Crystal Systems metric + symmetry of the UC

7 Primitive Lattices

- primitive = simple
- there are lattice points only at every corner of the unit cell, but not inside the cell or at the faces or edges
- a primitive unit cell comprises exactly 1 motif (1/8 * 8 = 1)
- - it is always possible to find such a primitive unit cell
Is the smallest possible unit cell always the best cell?

centering of cells / 14 Bravais lattices

Choice of the Unit Cell

- The unit cell should be as small as possible; short lattice vectors!
- At the same time it should represent the symmetry of the crystal; this means that the lattice vectors should run parallel to symmetry axes or perpendicular to symmetry planes.
- The axes should be, if possible, orthogonal (or hexagonal)!

5 *possible* primitive unit cells, all with the same 'volume'

Choice of the Unit Cell

- Due to symmetry reasons it is sometimes advantageous to choose not the smallest possible unit cell!
- Centered cells contain additional lattice points.
- The purpose is to describe the crystal in a higher symmetric system of coordinates!
- But note: The crystal system does not change!
- The centered unit cell possess the same symmetry as the primitive one, but the symmetry becomes more evident!

Centered Cells

- If lattice points are only at the corners of the unit cell, it is a primitive lattice; there are 7 different primitive lattices.
- Addition of further lattice points under retention of the symmetry give rise to 7 more lattices,
 7 centered lattices. This leads to the 14 Bravais lattices.

primitive unit cell

Ρ

single-side face-centered unit cell

C(AB)

body-centered unit cell all-side face-centered unit cell

F

8 corners x 1/8 = 1 lattice point/unit cell

C(AB)

$$(8 \text{ corners x } 1/8) + (2 \text{ faces x } 1/2) = 2 \text{ lattice points/unit cell}$$

(8 corners x 1/8) + (1 inside) = 2 lattice points/unit cell

F

(8 corners x 1/8) + (6 faces x 1/2) = 4 lattice points/unit cell

Centered Cells

- If lattice points are only at the corners of the unit cell, it is a primitive lattice; there are 7 different primitive lattices.
- Addition of further lattice points under retention of the symmetry give rise to 7 more lattices,
 7 centered lattices. This leads to the 14 Bravais lattices.

primitive unit cell

Ρ

single-side face-centered unit cell

C(AB)

body-centered unit cell all-side face-centered unit cell

F

Bravais lattices

Auguste Bravais

* 23th August 1811 in Annonay, Frankreich
† 30th March 1863 in Le Chesnay
French physicist, crystallographer, universal scholar

in 1848 he could show that there are only 14 unique different lattice types in 3D space

- some of the 28 conceivable lattice types are redundant
- some of them are not possible due to symmetry reasons

14 Bravais Lattices - Redundancy

14 Bravais Lattices – Incompatible Symmetry

- Atom sites: Where are the atoms located inside of the unit cell?
 - usage of the crystallographic system of coordinates
 - the lattice constants are used as units
 - the atomic site parameters are given as a coordination triple (x, y, z) and are fractional amounts of the lattice constants (a, b, c)

a = 5 Å, b = 20 Å, c = 15 Å $\alpha = \beta = \gamma = 90^{\circ}$

Atom 1: x = 2.5 Å, y = 10 Å, z = 7.5 Å \leftarrow absolute coordinates Atom 1: 0.5, 0.5, 0.5 \leftarrow relative or fractional coordinates

- Atom sites: Where are the atoms located inside of the unit cell?
 - usage of the crystallographic system of coordinates
 - the lattice constants are used as units
 - the atomic site parameters are given as a coordination triple (x, y, z) and are fractional amounts of the lattice constants (a, b, c)

a = 5 Å, b = 20 Å, c = 15 Å $\alpha = \beta = \gamma = 90^{\circ}$

Atom 2: x = 5 Å, y = 10 Å, z = 0 Å \leftarrow absolute coordinates Atom 2: 1, 0.5, 0 \leftarrow relative or fractional coordinates

- Atom sites: Where are the atoms located inside of the unit cell?
 - usage of the crystallographic system of coordinates
 - the lattice constants are used as units
 - the atomic site parameters are given as a coordination triple (x, y, z) and are fractional amounts of the lattice constants (a, b, c)

a = 5 Å, b = 20 Å, c = 15 Å $\alpha = \beta = \gamma = 90^{\circ}$

Atom 3: x = 2.5 Å, y = 20 Å, z = 7.5 Å \leftarrow absolute coordinates Atom 3: 0.5, 1, 0.5 \leftarrow relative or fractional coordinates

- Atom sites: Where are the atoms located inside of the unit cell?
 - usage of the crystallographic system of coordinates
 - the lattice constants are used as units
 - the atomic site parameters are given as a coordination triple (x, y, z) and are fractional amounts of the lattice constants (a, b, c)

Fractional Coordinates - CuSO₄.5H₂O

0.12527 -0.01315 0.28634

0.64893 -0.28899 0.11748

1.12844 - 0.43479 0.12435

-0.11557 -0.04315 0.30159

0.29749 -0.24436 0.31756

0.18247 0.07346

0.46556 0.59358

0.13959 0.37259

0.09305 0.15153

0.75491 0.58387

Atomic parameters (x/a y/b z/c)

1/2 1/2 1/2

1/2 0 0

0.65182

0.20280

0.13680

0.17223

0.48076

Cu1

Cu2

S1

01

02

03

04

05

06

07

08

09

Chalcanthite

Space-group *P* 1 triclinic *a* = 5.9553 Å *b* = 6.1084 Å *c* = 10.7048 Å

 $\alpha = 77.4090^{\circ}$ $\beta = 82.3720^{\circ}$ $\gamma = 72.6740^{\circ}$

Crystallographic Information File

Systematization of Crystal Structures

3. Step: Crystal classes crystallographic PG

2. Step: Bravais lattices primitive + centered

1. Step: Crystal Systems metric + symmetry of the UC 14

32

Symmetry operation (SO)

- is a (geometrical) reorganization/transformation, which maps an object onto itself
- by this operation a congruent image of the motif is generated, i.e. an image which is indistinguishable of the starting point

Symmetry element (SE)

• is the geometrical object (point, line, plane) on which the SO is carried out

Symmetry element (SE)

- is the geometrical object (point, line, plane) on which the SO is carried out
- it comprises at least all invariant spatial points (fixed points) of the operation

Symmetry element (SE)

- is the geometrical object (point, line, plane) on which the SO is carried out
- it comprises at least all invariant spatial points (fixed points) of the operation
- usually on one SE several different SO can be carried out

Symmetry concerning macroscopic object

Symmetry elements of macroscopic objects

- 1. Identity
- 2. Mirror plane
- 3. Axis of rotation
- 4. Center of inversion
- 5. Rotoinversion axis

even the most asymmetric objects have at least one SE

identity 1-fold axis of rotation (rotation by 360°)

symbol *E*

Mirror Symmetry

- also called 'line symmetry' or 'reflection symmetry' or 'bilateral symmetry'
- an object which does not change upon undergoing a reflection has mirror symmetry, it is mirror symmetric
- In 2D there is a line of symmetry or mirror line, in 3D a plane of symmetry or mirror plane

Rotational Symmetry

- single objects can have rotational symmetry of any order
- rotational symmetry may or may not be combined with mirror symmetry

Axis of Rotation

Axis of Rotation...

- rotation around a axis (= fixed points of the rotation) with an angle of rotation α
- after n rotations by α the starting position is reached
- n = order of the axis

 the number of crystal classes is limited to 32 because of the restrictions of rotational symmetry in crystals

... in crystallography

Mirror + Rotational Symmetry

- single objects can have rotational symmetry of any order
- rotational symmetry may or may not be combined with mirror symmetry

5-fold axis of rotation 1 unique mirror plane

5*m*

6-fold axis of rotation 2 unique mirror planes

6*mm*

Inversion symmetry

- also called 'origin symmetry' or 'center of symmetry'
- there is always a matching part, which has the same distance from a central point but in the opposite direction
- in the plane it is identical with rotational symmetry of order 2 (2-fold axis of rotation)

symbol *i* or 1 ("one-bar")

X, Y, Z -X, -Y, -Z Source: Frank Hoffmann

Rotation + Inversions Symmetry

- a **rotoinversion** is a combined SO, where two transformations have to be carried out
 - (1) rotation around 360°/n
 - (2) immediately followed by an inversion at a center of symmetry, which lies on the rotoinversion axis

Roto-inversion axes of order 1, 2, and 3

odd rotoinversions possess automatically a center of inversion

Roto-inversion axes of order 4 and 6

- even rotoinversions contain automatically an axis of rotation of the half order (4-bar contains a 2-fold, and 6-bar contains a 3-fold axis of rotation)
- if the order n is even, but not divisible by 4, then there is automatically a mirror plane perpendicular to the rotoinversion axis (holds for 2-bar and 6-bar)

Crystal Classes

 everyday objects can have any symmetry, and symmetry elements can be combined, in principle, arbitrarily

- the symmetry of crystals i.e. the symmetry of the external shape of crystals – is limited
- they can be classified into 32 classes only
- the symmetry has to be compatible with the repeating pattern of the crystal lattice

32 symmetry classes (point groups)

'infinite' number of symmetry classes

2nd Example

http://webmineral.com/data/Gypsum.shtml

orthoclase, and talc

http://webmineral.com/data/Gypsum.shtml

3rd Example

3rd Example

Introducing viewing directions, here a b c

3rd Example

3rd Example

đ

crystal class mm2

(ortho)rhombic-pyramidal

 $Zn_4Si_2O_7(OH)_2 \cdot H_2O$ Hemimorphite

4th Example

viewing directions (hexagonal crystal system)

c a [210]

Lattice Directions

4th Example

đ

crystal class 6/mmm

dihexagonal-dipyramidal

CuS Covellite

(Mg, Graphite, Nickeline)

Systematization of Crystal Structures

4. Step: Space groups complete symmetry

3. Step: Crystal classes crystallographic PG

2. Step: Bravais lattices primitive + centered

1. Step: Crystal systems metric + symmetry of the UC 230

32

14

Translation – Glide – Screw axis

Translational Symmetry

translation

- There are three symmetry elements, which have a translational component
 - 1. Translation (in units of whole unit cells along the lattice vectors)

mirror plane

repeating unit (unit cell)

Glide Planes/Lines

glide reflection \longrightarrow (a) reflection at a plane / line (b) translation (usually by 1/2 of the unit cell)

Glide Planes/Lines

Glide Planes/Lines

- There are three symmetry elements, which have a translational component
 - 1. Translations (in units of whole unit cells along the lattice vectors)
 - 2. Glide planes / glide axes
 - **3.** Screw axes

Kaiser's spotted newt

(a) reflection at a plane / line
 (b) translation (usually by ¹/₂ of the unit cell)

Notation of Plane Groups

- Notation of Wallpaper groups
 - in full notation always 4 symbols
 - begins with p or c according to the Bravais lattice type
 - followed by the digit n indicating the rotational symmetry order
 - plus two symbols indicating mirrors (m), glides (g)
 perpendicular to a) the x-axis and b) the y-axis
 - if there are no such operators a (1)
 is denoted

symmetry elements ng glide plane mirror plane 2-fold axis of rotation Bravais type

Notation of Plane Groups

Full and Short Notation of Wallpaper groups

the short notation drops digits **n** or a **m** that can be deduced, so long as that leaves no confusion with another plane group

p2mg

Optional assignment: Overlay this pattern with the unit cell and the respective graphical symbols of the symmetry elements at their correct positions within this pattern!

Glade Plane in Crystals

glide reflection

glide plane

- (a) reflection at a plane
- (b) translation by $1/_2$ or $1/_4$ of the unit cell

a, b, c, n, d, e

characters indicate the translation direction

Glade Plane - a

• glide plane $a \longrightarrow$ translation direction = a $\longrightarrow x + \frac{1}{2}$

- mirror plane runs parallel to the drawing layer
- additional symbol that indicates the direction of the transition

Glade Plane - a

• glide plane $a \longrightarrow$ translation direction = a $\longrightarrow x + \frac{1}{2}$

- mirror plane runs parallel to the drawing layer
- additional symbol that indicates the direction of the transition

Glade Plane - a

• glide plane $a \longrightarrow$ translation direction = a $\longrightarrow x + \frac{1}{2}$

- mirror plane runs parallel to the drawing layer
- additional symbol that indicates the direction of the transition

Glade Plane - b

• glide plane b \longrightarrow translation direction = b \longrightarrow y + $\frac{1}{2}$

 mirror plane perpendicular to the drawing layer

Glade Plane - b

• glide plane b \longrightarrow translation direction = b \longrightarrow y + $\frac{1}{2}$

 mirror plane perpendicular to the drawing layer

Glade Plane - b

• glide plane b \longrightarrow translation direction = b \longrightarrow y + $\frac{1}{2}$

Glade Plane - c

• glide plane c \longrightarrow translation direction = c \longrightarrow z + $\frac{1}{2}$

 mirror plane perpendicular to the drawing layer

Glade Plane - c

• glide plane c \longrightarrow translation direction = c \longrightarrow z + $\frac{1}{2}$

Glade Plane - c

• glide plane $c \longrightarrow$ translation direction = $c \longrightarrow z + \frac{1}{2}$

Glade Plane in Crystals

- (a) reflection at a plane
- (b) translation by $1/_2$ or $1/_4$ of the unit cell

a, b, c, n, d, e

 mirror plane perpendicular to the drawing layer

 mirror plane perpendicular to the drawing layer

 mirror plane perpendicular to the drawing layer mirror plane runs parallel to the drawing layer

 mirror plane perpendicular to the drawing layer mirror plane runs parallel to the drawing layer

 mirror plane perpendicular to the drawing layer mirror plane runs parallel to the drawing layer

 mirror plane perpendicular to the drawing layer

 mirror plane perpendicular to the drawing layer

а

 mirror plane perpendicular to the drawing layer

> b

а

 \rightarrow y + $\frac{1}{2}$ i.e. in the (*b,c*) plane $z + \frac{1}{2}$

- mirror plane perpendicular to the drawing layer
- there are two glide planes at once with two glide directions perpendicular to each other

> b

а

■ glide plane e → translation direction = b and c

 $\rightarrow y + \frac{1}{2}$ $\rightarrow z + \frac{1}{2}$

i.e. in the (*b,c*) plane

- mirror plane perpendicular to the drawing layer
- there are two glide planes at once with two glide directions perpendicular to each other

> b

а

■ glide plane e → translation direction = b and c

 $\rightarrow y + \frac{1}{2}$ $\rightarrow z + \frac{1}{2}$

i.e. in the (*b,c*) plane

- mirror plane perpendicular to the drawing layer
- there are two glide planes at once with two glide directions perpendicular to each other

> b

а

■ glide plane e → translation direction = b and c

 $\rightarrow y + \frac{1}{2}$ i.e. in the (*b,c*) plane $\rightarrow z + \frac{1}{2}$

- mirror plane perpendicular to the drawing layer
- there are two glide planes at once with two glide directions perpendicular to each other

> b

а

■ glide plane e → translation direction = b and c

 \rightarrow Y + $\frac{1}{2}$ i.e. in the (*b,c*) plane $z + \frac{1}{2}$

- mirror plane perpendicular to the drawing layer
- there are two glide planes at once with two glide directions perpendicular to each other

Double Helices

climber plant

B-DNA double helix

double spiral staircase http://www.olafureliasson.net/

screw

Characteristics of Helices

Characteristics of Helices

chiral objects

with the viewing direction along axis of the helix...

...if a clockwise screwing motion moves the helix away from the observer, then it is called a right- handed helix

....if a counter-clockwise screwing motion moves the helix away from the observer, then it is called a left-handed helix

Screw Axes

Source: Frank Hoffmann

Characteristics of Helices

Source: Frank Hoffmann

screw axis

(a) rotation by $360^{\circ}/6 = 60^{\circ}$

(b) translation by $1/_6$ of the unit cell

→ 6-fold screw axis $\longrightarrow 6_1 \longrightarrow$ translational component = 1/6

- Screw Axis n_m ; where m < n
 - \longrightarrow rotation by an angle α of 360°/n
 - \rightarrow n = order of the axis = 360° / n
 - translation of m/n of the whole unit cell parallel to the screw axis

Screw Axis n_m ; where m < n

a 3₂ screw axis (n=3, m=2) means

 \longrightarrow rotation by 360°/3 = 120°

 \longrightarrow translation of m/n, i.e. $^{2}/_{3}$ of the whole unit cell parallel to the screw axis

 α = rotation angle

the possible screw axes are 2_1 , 3_1 , 4_1 , 4_2 , 6_1 , 6_2 , and 6_3 , and the enantiomorphous 3_2 , 4_3 , 6_4 , and 6_5 .

Source: Frank Hoffmann

Screw Axes in Tellurium

3₁ screw axis

→ trigonal crystal system

 \rightarrow space group P3₁21

n_m

order	n	m	t	symbol
	2	0	0	2 🌔
		1	1/2	2 ₁
		2	1	2 🌔

symbol order n t m 3 0 3 0 31 / 1/3 1 $3_2 - 4$ 2 2/3 3 🔺 3 1

n_m

Systematization of Crystal Structures

4. Step: Space groups complete symmetry

3. Step: Crystal classes crystallographic PG

2. Step: Bravais lattices primitive + centered

1. Step: Crystal systems metric + symmetry of the UC 230

32

14

Space Groups

International Tables for Crystallography

International Tables for Crystallography Volume A: Space-group symmetry

Definition and Nomenclature of Space Groups

Space group

Nomenclature

Set of symmetry elements (and respective operations), which completely describes the spatial arrangement of a 3D periodic pattern.

Bravais type

Source: Frank Hoffmann

Crystallographic Viewing Directions

- monoclinic: determined by convention
- tetragonal, trigonal, hexagonal: rotational axis of highest order is by definition || to the *c*-axis and the first viewing direction
- rule of thumb: look for something new!

а

а

а

	crystal system	viewing directions		
	triclinic			
	monoclinic	b		
	orthorhombic	а	b	С
= b	tetragonal	С	а	[110]
= b	trigonal	С	а	[210]
= b	hexagonal	С	а	[210]
	cubic	а	[111]	[110]

Space groups to Point groups (Crystal class)

- Derivation of the crystal class from the space group
 - 1) Leave out the Bravais type
 - 2) Convert all SEs with translational components into their respective SEs without translation symmetry

Glide planes are converted into simple mirror planes

- Screw Axes are converted into simple axes of rotation
- 3) Axes of rotation, rotoinversion axes and mirror planes remain unchanged

space group
$$P2_1/n \longrightarrow crystal class 2/m$$

$$\vec{c}$$

 \vec{b}
 \vec{a}

Source: Frank Hoffmann

á

International Table for Crystallography

International Tables for Crystallography Volume A: Space-group symmetry

http://img.chem.ucl.ac.uk/sgp/mainmenu.htm

International Table for Crystallography

- Systematic listing of the 17 plane groups and 230 space groups
- Space group symbol in short and full notation as well as an unique #
- Indication of the crystal system and the crystal class in both systems of nomenclature (H.-M. and Schoenflies)
- Diagrams of the position of the SEs
- General position diagram
- Listing of all SOs as coordination transformations
- Multiplicity, Wyckoff letters, Site symmetry
- ...and some more ("incomprehensible") things ③

group theory / X-ray diffraction

Space group Pmm2

Space group Pmm2 - Header

Space group Pmm2

	TINUE	D				No. 25	Pmm2
Gene	maters with	ected (1)	11.00.00.000.0	AL 104.0.11	11. 635		
Position Malophory, Cost Wychoff Inten Six-spreaming		tine contractor and		1.0	otion conditions		
						General	
		014,9,2	(h) 8,8,1	mida	1818,917		adding.
		1025	100			Spec	ial ao a tita conditions.
		2.04	1.54				
1							
1			48.0				
11		22.					
11		1.0.4					
1.		0.004					
2.1							
		and and	-				
Symmetry of special projections Along [001] p 2 mm u' = u = b = b Origin at 0.0.2		(does	$\begin{array}{llllllllllllllllllllllllllllllllllll$		Along $[010] \neq 1.1 \times g' \rightarrow \pi$. $g' \rightarrow \pi$. $g' \rightarrow \pi$. $g' \rightarrow \pi$. Origin at $0, y, 0$.		
Mars	Distant man	inerphic inerphic	alışrəspi 1 1				
	ACRE 1		5				
Ha .	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
Ha Hb	(1) Food (2) Food (1) Boor) (2) Food	$1 e = 2a_1e' = 2a_$	3r)(Arm2, 38 28.x ~ 2rici	t (2) Reveal (x - 2)	24,4 ~ 20144	with sum of the second rate - tark	i = 261071.
Ha Hb Mas Hr	(1) Prod (1) Prod (1) See (1) See (1) Prod (1) Prod (1) Prod (1) Prod	(a' = 2a, a' = 2a, a' = 2a, b' = 2a, b' = 2a, b' = 0 orphic subgritter (a) and (b) and (c)	Seriekran 2, 20 - 20, or - 2010 maps of laws - 200(25); 12	t (2) Rosel (x - 2) d index (Prosel (r - 2c)	(26,9° ~ 261)4.0	ar val 154 avat (a - 18)	- 26(01)
Ha Hb Mas He Mai	(1) Prod (1) Prod (1) Row (1) Row (1) Prod (1) Prod (1) Prod (1) Prod (1) Prod	(a = 2a, e' = 2 (a = 2a, b = orphic subg 2 (a' = 2a or b sometphic s	3r) (Arm2, 20 2B,r = 2r)() ranges of horse r = 26r(25); [2 opergroups	([2]] Fmm2 (x - 2) d index (Fmm2 (x - 2)	(24,4° = 261),148 (229	ar, mi (1); warna - 14)	s = 261(93)
Ha Hb Mas Hc Mai	(1) Pres) (2) Pres) (2) Pres) (2) Pres) (2) Pres) (2) Pres) (2) Pres) (3) Pres)	(a = 2a, a' = 2a, b') orphic subgroup $(a' = 2a \text{ or } b)$ commercial subgroup $(a' = 2a \text{ or } b)$ commercials (a')	Sectore 2, 10 - 20, x = 2010 ranges of horse - 200(25); [2 oper_fromps on a (71); [2] P	(; [2] Boxe2 (x'- 2) d Index (Form2 (r' - 2)) mmx (39); [2] F1	- 24, e" == 26114.m (225) Lene: (995, (21, P.4,	ev (107), (2) Pile2 (115)	s = 36(0)
Ha Hb Masi Hc H	[1] Prod [2] Prod [2] Prod [2] Prod [2] Prod [2] Prod [2] Prod [2] Prod [2] Prod [2] Prod	$\label{eq:constraints} \begin{split} & (a = 2a, a^*) = 2a, b^* \\ & \text{orphic subgradies} \\ & \text{orphic subgradies} \\ & (a = 2a \text{ or } b) \\ & \text{ormorphic subgradies} \\ & ormorphic $	Service and 2010 - 2010 - 2010 - 2010 - 2010 - 2010 (2010) - 2010 (2010) - 2010 (2010) - 2010 (2010) - 2010 (2010)	(; [2] Boxe2 (x' - 25 d index (From2 (r' - 2c) mmx (70); [2] P (mm2 (4mm2, 30	- 22, e* = 243 (Am 1(25) - (25) - (25)/mm 2 (44)	er (107) (2) Ale3(115)	s = 36000
Ha Hb Masi Hc Mini I H	(1) Prod (2) Prod (2) Prod (2) Prod (2) Prod (2) Prod (2) Prod (2) Prod (2) Prod (2) Prod	or - 2014 2014 - 2014 orphic subg 104 - 2014 conserptic score plate score plat	Service 2, 20 - 20, or - 2010 maps of large - 200(25); [] apergroups mat(1); [2] P m2(20); [210)	(2) Form2 (x - 2) d index (Prom2 (x - 2c) mmx (39) (2) P1 mm3 (Arren), 38	- 24, e* = 243 (446 (22) (- 44, 09% (2)/P4, (- 2)/P4, 02)/P4,	n ; m; ;;;; nn; ;;; nn; ; n = ; n) n: (100x ;;;); P3n2 (115)	s = 36(0))
Ha Hb Mari Hc Milai H	(1) Proc. (2) Proc. (2) Roor (1) Proc. (2) Proc. (2) Proc. (2) Proc. (2) Proc. (2) Proc.	<pre>c = 20, e' = 2 cr = 20, e' = 2 cr = 20, e' orphic only 2 cr = 20 or b connerplik; s e (47); (2) Per 2 (17); (2) Am</pre>	34104cm2, 20 20107 - 2410 maps of lowe (= 200125112 opergroups on a CF15 [2] P m 2 CH55 [2140	(12)Ban21(r- 25 Fam2(r-26) Ama2(r-26) max(20)(2)P m2(4mm2)B	(25) (25) (am (95) (2)/F4, (21)/mm2 (44)	nc (100x (2) P3n2 (11%)	s = 36(0))
Ha Hb Mari He Mhil H	11 Proc 21 Proc 21 Resol 21 Resol 21 Proc 21 Proc 21 Proc 21 Proce	<pre>cur = 2x/r = 2xr = 2x/k = septite only for = 2x or b second plate s (dT); (2) for 1 (21); (2) for</pre>	Sricken2, 30 20cm - Srick maps of large - StartSrick (2) opergroups matCity (2) P m2 City (2) R	(2) Fam2 (x - 2) d index (Pam2 (x - 2) mm (39) (2) P1 m2 (Amm2 18	(25) (25) (26) (21/P4, (21/P4,) (21/P4, (24/P4,	n., m. (1)(1000100-10) n.(1001(2)P4n2(115)	s = 36(0))
Ha Hb Math Rc Math U	[1] Proc. [2] Proc. [2] Proc. [3] Ran (1) [7] Proc. [1] Proc. [7] Proc. [7] Cross	<pre>(iii = 2a, v = 2a, b) (iii = 2a, b) orphic subgr (iii = 2a or b) ormorphic; subgr (iii = 2a or b) ormorphic; subgr (iii) = 2a or b) (iii) = 2a or b)) (iii) = 2a or b) (iii) = 2a or b) = 2a or b) (iii) = 2a</pre>	Sey George 2, 20 20107 - 2010 rouges of lower - 2000/2511 (2 opergroups on a CFI) (2) P m 2 CFI (2) R)	ц (2) Виня 2 (х - 25 А вобех (Рана 2 (х - 26) ана с193, (2) Ра ана 2 (8 ана 2, 38	(25) (25) (am.(9%)(2)(P4) (2)(Pm52(44)	ar, do (j(1942) a - 34) ac(105) [2]P4a2(115)	s = 36(0))
Ha Hb Mari He Sthat (H	(1) Proc (2) Proc (2) Reac) (2) Reac) (2) Proc (2) Proc (0 = 2a/c = 2a/	2r(Grew 2, 20 20cs* - 2r(G ranges of horse ~ 20e(25); [2 ger(groups mat(21); [2])# m 2 (20); [2] #)	ц (2) Виня 2 (х - 25 А йобех Агана 2 (х - 26) ная с (39, 22) Р ная 2 (8 ная 2, 38	(25) (25) (am.(95), (2),P4, (27)/am.7 (44)	ar, do (j(1942)a - 34) ac(105) [2]P4a2(115)	s = 36(0))

Space group Pmm2 - Diagram of the Symmetry elements

Space group Pmm2 - Diagram of the Symmetry elements

Space group Pmm2 - Diagram of the Symmetry elements

Space group Pmm2

	NTINUE	D			No. 25	Pmm	
Gen	erators ed	ected (1).	(1,0,0), r(6,1	#1. 1(0.0.1); (2); (2)			
Prei	illow						
Mahiphany. Wydedf Ieles.		Cand	limit: •	Butho	otes conditions		
See.	(research)				Gran	China	
4	+ 8	00.02	(D) 8,8,2	make shit	5.7 80.00	addison.	
					Speci	al ao concondition.	
2	* *	1.8.4	1.5.1				
1		8,9.2	9,5.2				
1	/ *	4.8.2	6,8.2				
		4,812					
1	4	1.1.1					
1		6.40.2					
20							
		and such	11.00				
Along [001] p2 arm u'= x = b'= b Origin at 0.0.;			Along $ 100\rangle \neq 1.01$ w' = 0 $W = cOrigin at z, 0, 0$	Along [000] $p \ge 1$ or $y' \sim y$ $y' = y$ Origin at $0, y, 0$	Along 2010 p 1 1 m u' = v $b' = aChrigin u \approx 0, \pm 0$		
Mar	12 Plan 12 Plan 12 Pm1 12 Pm1 12 Plan	10000000000000000000000000000000000000	adogroseps 4 2				
II.	11 Fred 12 Fred 12 Rev 12 Rev 11 Rev 11 Free	$\begin{split} & w_{2}(w = 2w_{1}(2); \{1\} Fbw2\}(k = 2b_{1}(Fwa2); 2b_{2} 2 Fv22 w = 2w_{1}(2); \{1\} Fwx2\}_{1}(w = 2w_{1}(2)); \\ & w_{2}(w = 2w_{1}(Fwx2); 2b_{2} 2 Awx2 W = 2b_{2}(w = 2w_{1}(2)); \{1 Awx2 W = 2b_{2}(w = 2w_{1}(2)); \\ & w_{2}(w = 2w_{1}(w = 2w_{1}(2)); 2b_{2}(2) 2 Bwx2 W = 2b_{2}(w = 2w_{1}(2)); \\ & w_{2}(w = 2w_{2}(w = 2w_{1}(2)); 2b_{2}(2) 2 Bwx2 W = 2w_{1}(w = 2w_{1}(2)); \\ & w_{2}(w = 2w_{2}(w = 2w_{2}(w = 2w_{1}(2)); \\ & w_{2}(w = 2w_{2}(w = 2w_{2}$					
	timal ivers	orphic subg	raigs of lower - Decific 12	si index (Prom2)(r = 2e)(25)			
Mar	[1] Perm	10.00					
Mar He Min I H	(2) Press datad mon-1 (2) Press (2) Cress	n (47), [2] Pa 2 (37), [2] An	orea CLUP [3] to orea CLUP [3] to	nma (19); [2];Pilma (19) nm2(4mm2; 38); [2];Im	(2(P4,=c100))(2)P4=2(105) (2(44)		
Mar De Mar I I	(2) Para (2) Para (2) Para (2) Cara	erialija (25 Per 2 (276, [2] A e	ona (11) (2) P ona (11) (2) P on 2 (24), (2) R	nns (99) (2) Plan (99) nn 3 (land 19) (2) lan	(2)/F4,ec(107);(2)/F4;e2(115) e2(44)		
Mar De Mar I II	(2) Perm (2) Perm (2) Perm (2) Care	нованијева, к на (47), (2) Ре 2 (77), (2) Але	near (20 mps near (20 k (21 A)	nno (78) [2]/Anno (79) an 24 Anno 238) [2]/An	(2)/F4,ec(105);(2)/F4,e2(115) (2)44)		
Mar He Mhi I H	(2) Perot diad post-1 (2) Perot (2) Const	на (ата (2) Ре 2 (75), (2) Але	ады (2 тара 1994 (2 тара 1994 (2 18) 1994 (2 18)	nna (195) [2]/Anno(195) nn 24Anno 2385 [2]/An	(2)/P4,ec(107),(2)/P4,e2(115) e2(44)		

image and mirror image

+

position along the *c*-direction above the projection plane

+

position along the *c*-direction above the projection plane

+

position along the *c*-direction above the projection plane

- When talking about crystal structures, people will usually report the *space group* of a crystal
- Space groups are made up from
 - point symmetry (not translational)
 - lattice symmetry (translational)
 - glide and/or screw axes (some translational component)

Summary

Point Symmetry (3D)

Plane Symmetry (2D)

Space Symmetry (3D)

Inversion (point mirroring) Rotation Roto-Inversion (rotate, then invert) Reflection

-

Translation Inversion (point mirroring) Rotation

Reflection Glide (reflect, then translate, 2D) Translation Inversion (point mirroring) Rotation Roto-Inversion (rotate, then invert) Reflection Glide (reflect, then translate, 3D) Screw (rotate, then translate)

17 plane groups

5 Bravais lattices

230 space groups32 crystal classes14 Bravais lattices

32 crystal classes

Schoenflies vs. Hermann-Mauguin

"Schoenflies symbolism"

"Hermann-Mauguin symbolism"

Rotoinversions vs. Rotary reflections

Symmetry elements of macroscopic objects

Schoenflies		Hermann-Mauguin		
Identity	Ε	Identity	1	
Mirror plane	σ	Mirror plane	m	
Axis of rotation	C _n	Axis of rotation	n	
Center of inversion	i	Center of inversion	1	
Rotation-reflection axis (Improper axis of rotation	<i>S_n</i>	Rotoinversion axis	n	
Roto-inversions vs. Rotary reflections

Source: Frank Hoffmann

International Tables for Crystallography – Space group P2 1 /c

CONTINUED						No. 14	$P2_i/c$
G		ators :	elected (1):	1(1.0.0); 1(0,1,0); 1(0	(0, 1); (2); (0)		
Po Ma	ditio Nyfa Nyfa	enterna de la constante de la		Coordinates			Reflection conditions
si		inutry					General
4	*	1	(1) 6 (1)	(2) $Ly + \frac{1}{2}, 2 + \frac{1}{2}$	0132	$(4)_{12}, 5+4, \xi+\frac{1}{2}$	$\begin{array}{l} 001 : I = 2n \\ 000 : k = 2n \\ 001 : I = 2n \end{array}$
							Special: as above, play
2	4	1	3,0,5	4.4.0			$hkl^{2} = k + l = 2n$
2	÷	1	0.0.+	0,4.0			$Mt' > k+t = 2\pi$
2		+	7.0.0	6.8.8			MI': A+I=2n
2		1	0.0.0	0. +. +			$hkl=k+l=2\pi$
1000	aller I	at (1, 10, 1		: Origin a	#4,8,9	Onigue	# 10, 10 P
M	nin	nal nee	-isomorphic	subgroups			
M	nin	12 P1-	isomorphic 11Pc, 7) 11P2, 40	saligroups 1: 4 1: 2			
M	min	nal non [2] F12 [2] F12 [2] F12 [2] F14	s isomorphic 1 (Pv, 7) (, 1 (P2), 4) 2)	subgroups 1: 4 1: 2 1: 3			
M I III	rsin	nal new [2] F12 [2] F12 [2] F12 [2] F14 [2] F14 [2] F14 [2] F14	a isomorphic 1 (Pc, 7) (1 (P2, 4) 2)	saligroups 1; 4 1; 2 1; 3			
M I IIII M IR	esin .	nal new (2) /* 12 (2) /* 12 (2) /* 12 (2) /* 12 none nal ison (2) /* 12	s isomorphic 1(Pc, 7) (1(P2, 4) 2) morphic soly (/v1(a) = 2a)	subgroups 1: 4 1: 2 1: 3 proups of lowest index or x = 2a, c = 2a + c(d)	2./r. 14x (1)₽	12./c1/ b = 3 b (1 P 2./c,14)	
M I III III M III	aller .	nal new (2) // (2) (2) // (2) (2) // (3) (2) // (3) (2) // (3) (3) (50) (3) (50) (5) (50) (5) (5)) (5) (5) (5)) (5) (5)) (5) (5)	s isomorphic 1(Pv, 7) (1)P2, 40 2) morphic soly (v1)a = 2a -bonsorphic	subgroups 1: 4 1: 2 1: 3 groups of lowest index or $x' = 2a, c' = 2a + c_1 oF$ supergroups	z_ir.14⊾[1]₽	12,/c106 = 30c0#2,/c,14)	
M I III M III M II	enin enin	nal non (2) P 12 (2) P 13 (2) P 13 nonz nal hon (2) P 13 (2) P 14 (2) P 15 (2) P 15 (2) P 15 (2) P 15 (2) P 15 (3) P 15 (3	isomorphic $1(P_2, T)$ $(1)P_2, th$ 2) morphic solv (v+1)v = 2uv isomorphic uv(2) = 2uv isomorphic uv(2) = 2uv uv(2) = 2uv	subgroups 1: 4 1: 2 1: 3 groups of lowest index or $x = 2a, x = 2a + cropt supergroups our (SA), [2] Preso(SA),supergroups$	(2_1-141 (3)P 2}Phane(551)	12,/c14b = 300(P2,/c,14) 2](Pece (56), [2](Phene (57)	1 [2] Process(50); [2] Physe (60);
M I III M III II	rain	al pro- [2] P12 [2] P12 [2] P12 [2] P12 mail mail mail [2] P12 [2]	- isomorphic 1(Pr, 7) (1(P2, 4) 2) morphic soly (v1)a = 2a -bourphic -solspic (v1)a = 2a -bourphic -bourphic (v1)a = 2a -bourphic (v1)a = 2a -bour	subgroups 1: 4 1: 2 1: 3 groups of lowest index or $\mathbf{z} = 2\mathbf{a}_i \mathbf{c} = 2\mathbf{a} + c_i \mathbf{c}^p$ supergroups out (5): (2): Conce (60): 21: (2): (2): (2): (2): (2): (2): (2): (2)	1 2./r. 141: [3] P 2] Phane(551:] 50: [2] F12/r 10	12,/c149 = 380(P2,/c,14) 3],Pecet566,[2](Please(5)) 62,c.156,[2],P12,/s116 =	12] Panam (Ni), [2] Phys (Ni), 901P2/10, 111
M I III	ruie	and note (2) P 1 ((2) P 1 ((subgroups 1: 4 1: 2 1: 3 groups of lowest index or $\mathbf{z} = 2\mathbf{a}, \mathbf{c} = 2\mathbf{a} + \mathbf{c} + \mathbf{c} + \mathbf{c}^T$ supergroups sola (30), [2] Preva (54), [mot352, (2] Conce (46) (2), [2] C(2)/c 1 + (2)/c, 1 (P2/c, 1))	1 2./r. 14x (3)P 21Phone(55x) 5c (2)F12/v10	12,/v149 = 3800°2,/v,140 21,Pecet590,121,Phew(57) C2/v,159,121,P12,/w14c +	. [2] Panan (M). [2] Phys (M). 901P2,/0.111
	nin	and note (2) P 1 + (2) P 1 + (2) P 1 + (2) P 1 + (2) P 1 + (3) P 1 + (4) P 1 + (s isomorphic 1 (Pr, 7) 1 (P2, 4) 2) morphic soly (r1 (r = 2a) -boarphic or(2r (2) Pa (r1 (r = 2a) -boarphic or(2r (2) Pa (r1 (r = 4b)	subgroups 1: 4 1: 2 1: 3 groups of lowest index or $x = 2x, c = 2x + cropt supergroups sol (30), (2) Preva (54), (motiS2), (2) Concerbid) (3), (2) Concerbid) (4), (2) Concerbid) (5), (2$	1 2, /v. 14k (3) P 2) Phone (55k) 5k (2) F1 2, /v1 0	12,/c14b = 360/P2,/c,14) 31,Pecet560,121,Phew(57) 52,/c,155,121,P12,/=14c +	. [2] Pasan (Mix [2] Phys (Mit) 901 PZ_1/8, 111
M I III M II	nin	(2) P12 (2) P13 (2) P13	s-isomorphic 1 (Pc, 7) 1 (P2, 4) 2) morphic solu (c1 (0 = 2a) -isomorphic or(32) (2) Pa or(32) (2) Pa (c1 (0 = 2a) (c1	subgroups 1: 4 1: 2 1: 3 groups of lowest index or $x = 2a, c = 2a + CoP$ supergroups out (20, 12) Press (54), (meth22, (2) Char (34), (meth22, (2) Char (34), (12) (2) Char (34), (12) (2) (2) (2) (2) (2) (2), (12) (2) (2) (2) (2) (2) (2), (12) (2) (2) (2) (2) (2) (2), (12) (2) (2) (2) (2) (2) (2) (2) (2) (2) (1 2_/c. 14k (3)P 2]Phone(55k) 5k (2]P12/c10	12,/c148 = 3800P2,/c,140 31,Pecet560,121,Phew(57) C2,/c,159,121,P12,/m14c +	; [2] Pasae (M); [2] Phys (M); 90 (PZ ₂ /m, 11);
M I III III	in lin	(2) P 12 (2) P 12	a isomorphic 1 (P, 7) 1 (P2, 4) 2) morphic only (1 0 = 2a + isomorphic or(2) (2) Pa or(2) (2) Pa (a + b) (2) Pa (a + b) (2) (a + (a + b) (a	subgroups 1: 4 1: 2 1: 3 groups of lowest index or $n = 2n, c = 2n + c_1 dr$ supergroups	1 2_/v. 14x (3)P 2)Phom(55x) 5x (2)P12/v10	12/c148 = 38c0P2/c,14) 21/Pecet560,121/Plew(55) C2/c,159,121/P12/m14e +	; [2] Passer (50); [2] Physe (50); 90 (PZ ₂ /m, 11);
M I III	nin	and note (2) P12 (2) P12 (2	a isomorphic 1 (Pv, 7) 1 (P2, 4) 2) morphic solu (v1 0 + 2a v - isomorphic a (01) (2) Pa a (01) (2) Pa (v1 0 + 40) (v1 0 + 40)	subgroups 1: 4 1: 2 1: 3 groups of lowest index or x = 2a, c = 2a + c)dF supergroups on (20) (2) Prova (54); mat(22) (2) Prova (54); mat(22) (2) Prova (54); 21: (2) (2) (2) (2) (2) (2); (2) (2) (2) (2) (2) (2) (2) (2); (2) (2) (2) (2) (2) (2) (2) (2); (2) (2) (2) (2) (2) (2) (2) (2) (2); (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	1 2_/v. 14x (3)P 2)Phom(55x) 5x (2)F12/v10	12/c148 = 38c0P2/c,14) 31/Pece (56,12)/Plew (55) 62/c,155 (2)/P12/m14e +	12] Passe(18), [2] Phys (18), 90 (PZ ₂ /m, 19)
M I III M III	en la	and note [2] P1 (2] P2 (2] P3 (2] [2] P3 (2] P5 (2] note: note: [2] P3 (2] P3 (2] [2] P3 (2]	a horserphic 1(Px, 7) 1(P2, 4) 2) morphic soly (v110: +2a v -isomorphic sol31(2) v=101(2)Pa (v10: +40	subgroups 1: 4 1: 2 1: 3 groups of lowest index or a = 2a, c = 2a + c)oP supergroups supergroups sup(2), 2] Press(54), me(152; [2] Casce (64); 2b; [2] C (2; e) (6C2/a, 1) (P2/a, 15)	(2)/2.141(3)/ 2)/Pham(551) 51(2)/12/210	12,/c149 = 39x0P2,/c.14) 31,Pece (56x12),Phew(55) C2,/c.155x121,P12,/w146 =	12] Passe(50), [2] Phys (60), 901P2,/m.111
Ma II III III III		and note [2] P1 ([2] P1 ([2] P1 ([2] P1 (note	a isomorphic 1(Px, 7) 1(P2, 4) 2) morphic soly (x110 + 2a x -isomorphic sol3x [2] (x110 + 2a x -isomorphic sol3x [2] (x12) (x12) (x10 + 10 (x10 + 10)	subgroups 1: 4 1: 2 1: 3 groups of lowest index or a = 2a, c = 2a + c)oP supergroups supergroups sup(2)(2) Preva(54); me(52)(2) Preva(54); 21: (2) C 12; e) 0 C2; (e, 1) (P2; e, 13)	(2)/2.14k.[3]/P 2]/Pham(55k) 5k.[2]/12/210	12,/c149 = 39x0P2,/c,140 31,Pece (59x12),Phew(55) C2/c,155x(21)P12,/w146 =	12] Passe(50) [2] Phys (60). 901P2,/m.111
	estin estin	and note [2] [F] ([2] [F] ([2] [F] (note) note	a isomorphic 1(Px, 7) 1(P2, 4) 20 morphic soly (v110: +2a v -isomorphic sol31(2) v=1012(2) v=1012(2) (v10: +40	subgroups 1: 4 1: 2 1: 3 groups of lowest index or a = 2a, c = 2a + c)oP supergroups supergroups sup(2), 2] Press(54), 1 me(152) [2] Casce (64) 2b; [2] C (2c) (4, 1) (2c) (2c) (5)	(2)/2.145.[3]/P 2]/Pham(555) 55.[2]/12/210	12,/c149 = 39x0P2,/c.14) 31,Pece (56x12),Phew(55) C2,/c.15x121,P12,/w14c =	12] Passe(50) [2] Phys (60), 901P2,/m.111
Ma II		and peed [2] F1 ([2] F1 ([2] F1 (peed) and been [2] F1 ([2] F1 (a isomorphic 1(Px, 7) 1(P2, 4) 20 morphic soly (v100 + 2a v -isomorphic sol3a (2) v=03a (2) (v100 + 40 (v100 + 40	subgroups 1: 4 1: 2 1: 3 groups of lowest index or <i>x</i> = 2 <i>x</i> , <i>c</i> = 2 <i>x</i> + <i>c</i>) of supergroups supergroups supergroups (2) (2) Cosce (34), 1: (2) Cosce (34), 2: (2) Cosce (34), 2: (2) Cosce (34), (2: (2) Cosce (34), (3: (2) C	(2)/2.145.[3]/P 2]/Pham(555) 55.[2]/12/210	12,/c149 = 39x0P2,/c.140 31,Pece (56x12),Phew(55) C2,/c.155x121,P12,/w146 =	12] Passe(50), [2] Phys (60), 901P2,/m.111

Copyright © 3006 International Union of Crystallography 184

185

Space group P2 1 /c – Header

Short symbol $P2_1/c$ Crystal class C_{2h}^5 2/mCrystal systemMonoclinicNumberNo. 14Full symbol $P12_1/c1$ Patterson SymmetryP12/m1

UNIQUE AXIS *b*, CELL CHOICE 1

settings

 $P2_1/c$ – standard space group $P2_1/a$ $P2_1/b$ – non-standard space group variants of $P2_1/c$ $P2_1/n$

Source: Frank Hoffmann

Space group P2 1 /c – Header

International Tables for Crystallography – Space group P2 1 /c

Monoclinic

Patterson symmetry P12/m1

International Tables for Crystallography (2006), Vol. A. Space group 14, pp. 184–191.

 $\begin{array}{ccc} P 2_1 / c & C_{2h}^{\delta} \\ \text{No. 14} & P 1 2_1 / c 1 \\ \text{UNIQUE AXIS } b, \text{ Cell choice 1} \end{array}$

2/m

Origin a 1

Asymmetric unit 05+51:05+51:05251

Symmetry operations

(D 1 (D 200,5.0) 0,x.1 (D T 0.0.0 (0 c x.1.2

$\begin{array}{c} \text{ determines selected} (i)_{1} \neq (1,0,0), i(0,1,0), i(0,0,1), (2)_{1} \in (1) \\ \text{ binding}, & \text{ Coordinativ} & \text{ Reflection conditions}, \\ \text{ which if maximum is the symmetry } & \text{ Generall} \\ e = 1, (1)_{1} x_{1} z_{2} = (2)_{1} x_{2} + z_{2} + 1, (1)_{1} x_{1} z_{2} = (0)_{1} x_{1} + z_{2} + 1, \\ 0 & 1 & 0 & 1, z_{2} = 0, \\ 0 & 1 & z_{2$	ONTINU	ED			No. 14	$P2_{1}/c$
Variants Conclusion Reference of the second stress $(y_1,y_2,y_3,y_1,y_2,y_3,y_1,y_2,y_3,y_2,y_3,y_1,y_2,y_3,y_1,y_2,y_3,y_1,y_2,y_3,y_1,y_2,y_3,y_1,y_2,y_3,y_1,y_2,y_3,y_1,y_2,y_3,y_1,y_2,y_3,y_1,y_2,y_3,y_1,y_2,y_3,y_1,y_2,y_3,y_1,y_1,y_1,y_1,y_1,y_1,y_1,y_1,y_1,y_1$	enerators	elected (1)	+(1.0.0); +(0.1.0);	4(8.0.1); (2); (3)		
in symmetry General: $x = 1$ (1) $x, y; z$ (2) $L, y + l, 2 + l$ (1) $L, l, 2$ (4) $x, l + l, 2x$ $00^{l}; l = 2x$ $d = 1$ $0, 0, l = 0, l, 0$ $4t^{l}; x + l = 2x$ $4t^{l}; x + l = 2x$ $d = 1$ $0, 0, l = 0, l, 0$ $4t^{l}; x + l = 2x$ $4t^{l}; x + l = 2x$ $d = 1$ $0, 0, l = 0, l, 1$ $4t^{l}; x + l = 2x$ $4t^{l}; x + l = 2x$ $w = 1$ $0, 0, 0, 0, l, l, 1$ $4t^{l}; x + l = 2x$ $4t^{l}; x + l = 2x$ $w = 0$ $00^{l}; p^{2}; p$ $4t^{l}; x + l = 2x$ $4t^{l}; x + l = 2x$ $w = 0$ $00^{l}; p^{2}; p$ $4t^{l}; x + l = 2x$ $4t^{l}; x + l = 2x$ $w = 0$ $0^{l}; p^{2}; p$ $4t^{l}; x + l = 2x$ $4t^{l}; x + l = 2x$ $w = 0$ $0^{l}; p^{2}; p$ $4t^{l}; x + l = 2x$ $4t^{l}; x + l = 2x$ $w = 0$ $0^{l}; p^{2}; p \cdot x$ $0^{l}; p^{2}; p \cdot x$ $0^{l}; p^{2}; p \cdot x$ $w = 0^{l}; p^{2}; p \cdot x$ $0^{l}; p^{2}; p \cdot x$ $0^{l}; p^{2}; p \cdot x$ $0^{l}; p^{2}; p \cdot x$ $(1)^{2}; p^{l}; 1, 2p^{l}; p \cdot x + 1; 2$ $(1)^{2}; p^{l}; 1, 2p^{l$	usitions http://www.		Coordinate	n .		Reflection conditions
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	r I.	(I) A 312	(2) £,y++,2+	0162	$(0) \ x, \beta = 1, \tau + 1$	General: 801 : 1 = 2n 040 : 4 = 2n
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						000 1 = 2m Special an above, edge
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	1.0.1	4.4.0			hkl : k + l = 2n
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1	0.0.4	0.5.0			Mt : $k+t = 2\pi$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a 1	7.0.0	6.8.8			bkt = k + t = 2n
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	+ 1	0.0.0	0.4.5			hkl = k + l = 2n
$ \begin{array}{l} \label{eq:advalue} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	(2) F1 (2) F1 (2) F1 (2) F1 (2) F1	1499, 7) (,1392), 46 (2)	1:4 1:2 1:3			
 [2] P 12₁/c 1 of = 2a or af = 2a, c = 2a + cloP2₁/c, 14a, [3] P 12₁/c 1 db = 360 (P2₁/c, 14) dinimal non-boundryble supergroups. [2] P non (52), [2] P non (53), [2] P con (54), [2] P harm(55), [2] P harm(5	factional iso	morphic sub	groups of lowest in	ides		
Hulman Lon-Somerphic supergroups [2] Prov (52), [2] Prov (53), [2] Prov (54), [2] Pharm (55), [2] Prov (56), [2] Pharm (57), [2] Pharm (56), [3] Pharm (56)	kr [2]/F1	1/c1 to = 2a+	or a - 2a.c - 2a+c	66 72 /v.141.017	$12_c/c1/b = 3b(0^p2_c)c.14$	F
	(2) Pm (2) Pm (2) Ph (2) A1 (2) P1	i-bomorphic is (52); [2] Pa (a (51); [2] Pa ([a (51); [2] Pa ([a (51); [2] Pa ([a (51); [2] Pa	ma (3) ₂ [2] Pe ca (3) ma (3) ₂ [2] Pe ca (3) ma (32); [2] Cm ce (4) (2) ₂ [2] C [2] (2) (2) (2) ₂ [c, 13)	4); [2] Phane(55);] 4); 47, 15); [2];712;[210	21/Peen (56), (2)/Phone (57 C2/r, 15), (2)/P12/m156	h, [2] Panase (58), [2] Physical (68); - 4e3 (P2,/m, 11);

Copyright © 3006 International Union of Crystallography 184

185

Diagram of the Symmetry elements – Space group P2 1 /c

Diagram of the Symmetry elements – Space group P2 1 /c

Source: Frank Hoffmann

Diagram of the Symmetry elements – Space group P2 1 /c

centres of inversion

International Tables for Crystallography – Space group P2 1 /c

International Tables for Crystallography (2006). Vol. A. Space group 14, pp. 184-191. $P2_1/c$ C_{2h}^{δ} 2/mMonoclinic P12./c1 No. 14 Patterson symmetry P12/m1 UNIQUE AXIS b, CELL CHOICE 1 --•• • 0* 0* 16 ÷O % +O . 10 % -O% --0) \odot \bigcirc^* 0*

Origin a 1

Asymmetric unit #SaS1_0SyS1_0StS1

Symmetry operations

(D 1 (D 200,5.0) 0,x.1 (D T 0.0.0 (0 c x.1.2

C1	CONTINUED						NO	14	$P Z_1/C$
G	-	ators se	lected (1)	+(1.0.0); +(1	1.1.07 198	(0,1); (2); (1)			
Po 55	aitin hipti (kel)	eity. Domos		Ca	edisates			Reflecti	on conditions
54		inunty						General	
4	*	1	(1) A (12	(2) Ly-	+1.7+1	0152	(4) x,5+3,2+3	101 : 1 040 : 4 001 : 1	= 2a = 2a = 2a
								Special	an above, plan
2	4	1	+.0.+	4, 8,0				642 - A	= l = 2n
2	4	1	0.0.+	0.5.0				2421.1.4	$+1 = 2\pi$
2		+	7.0.0	5.8.8				647 ± 4	+ t = 2a
2		1	0.0.0	α,\pm,\pm				Md - A	+1=24
M	min	nal pers	isomorphic	subgroups		A.A.M.T.		conjuna e jur	
i.	rsie	12 P 2	isomorphic (Pr, 7) 1 (P7, 4)	subgroups 1: 4 1: 5					
		21#10	0	1:3					
in		bonds:							
м	nie	nal ison	orphic sub-	groups of her	est index	2			
lk		2] #12,	(c1 ta = 2a)	or a' = 2a.e' =	28+610	2,/c.141(0)//	$2_c/c1/b = 3b1/b^2$	(c. 14)	
M	-	al non-	bonorphic (32) [2] Pe	supergroup tea (53); [2] /	vcetMc1	21Pham(55);3	11Pec=1560, 121Ph	rm(57);[2];Panm(5	0. [2] Phys (60):
11	$\begin{array}{l} (2) Phene (94), (2) Phene (95), (2) Charce (96) \\ (2) A 12 (n + 0) C 2 (n + 12) C + 2 (n + 0) C 2 (n + 15) (2) F + 2 (n + 16) C 2 (n + 16) (2) P + 2 (n + 16) C 2 (n + 16) (2) (2) C + 2 (n + 16) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2$								

) O image and mirror image

above / below
 the projection plane

+

) O image and mirror image

above / below
 the projection plane

⑦ ○ image and mirror image

+ — above / below
 the projection plane

 $\frac{1}{2} + = \frac{1}{2} + y = y + \frac{1}{2}$ $\frac{1}{2} - = \frac{1}{2} - y = -y + \frac{1}{2}$

Source: Frank Hoffmann

) O image and mirror image

above / below
 the projection plane

Source: Frank Hoffmann

- O image and mirror image
- + above / below the projection plane

Source: Frank Hoffmann

Asymmetric Unit – Space group P2 1 /c

- by pure translations of the unit cell in all 3 spatial directions the whole crystal is build
- however, the SEs of the space group act also on atoms *inside* the unit cell, they will be multiplied
- asymmetric unit: is the set of objects/atoms,
 which is sufficient to describe all other
 positions, the complete content of one unit cell,
 when we apply the SOs of the space group
- asymmetric unit: must not have any internal symmetry

END Session 1

Single Slit Diffraction

The 'slit' scatters light and become a point source

Single Slit Diffraction

Double Slit Diffraction

Multi Slit Diffraction

Constructive Interference

Destructive Interference

Diffraction by One Atom

Diffraction by Two Atom

Diffraction by Planes of Atom

Diffraction by Planes of Atom

XRD Machine

Powder Diffraction Pattern

2Theta (Coupled TwoTheta/Theta) WL=1.54060

Counts

Reflection Position and Intensity

What influences the peak position and intensity of Bragg reflections?

Example: CsCl

Reflection Position and Intensity

Real crystal structure CsCl **a** = 4.11Å, λ =1.54Å Calculate: d_(hkl) and θ_{hkl} for the following (hkl)

hkl	d	θ	20	I
(001)				
(011)				
(111)				
(002)				

(001) Reflection

$$d_{(001)} = a = 4.11 \text{ Å}$$

Re-call Bragg equation: $\lambda = 2d \sin \theta$

$$\theta = \sin^{-1}\left(\frac{\lambda}{2d}\right) = \sin^{-1}\left(\frac{1.54}{4.11}\right) = 10.80^{\circ}$$
(001) Reflection

The diagram shows the (001) planes scattering in phase

The reflecting power of atoms (normally called the atomic scattering factor) is related to the number of electrons in the atom

Cs⁺ = 54 electrons

Cl⁻ = 18 electrons

the reflected beam from Cs⁺ atoms has an amplitude 3x larger than the beam from Cl⁻ atoms Look at the wavefront A - A of the reflected beam.

- Beams from Cl⁻ atoms (on planes d₁₀₀ apart) are in phase.
- Beams from Cs⁺ atoms (also on planes d₁₀₀ apart) are in phase.

But, since Cs⁺ planes are exactly half-way between Cl⁻ planes, beams from Cs⁺ and Cl⁻ planes are exactly out of phase.

- Amplitude of diffracted beam ∞ y(54 18) = y(36)
 (y is some constant)
- > Intensity = $I_{001} \propto y^2$ (36)² = 1296y² (Weak reflection)

(002) Reflection

$$d_{(002)} = \frac{a}{2} = \frac{4.11}{2} = 2.055 \text{ Å} \qquad \theta = 22.07^{\circ}$$

This time all atoms scatter in-phase.

- > Amplitude of diffracted beam \propto y (54 + 18) = y(72)
- Intensity of diffracted beam I₍₀₀₂₎ ∝ y² x 72² = 5184y² (Strong reflection)

(002) Reflection

(002) Reflection

Cs⁺ and Cl⁻ ions all lie in the (011) planes Cs⁺ and Cl⁻ scatter in phase

$$d_{(011)} = \frac{a}{\sqrt{2}} = \frac{4.11}{\sqrt{2}} = 2.91 \text{ Å} \qquad \theta = 15.34^{\circ}$$

 $I_{(011)} \propto y^2 (54 + 18)^2 = 5184y^2$ (Strong reflection)

(111) Reflection

Cl⁻ ions lie in (111) planes and d(111) apart. Cl⁻ ions scatter in phase Cs⁺ ions lie mid-way between Cl⁻ planes. Cl⁺ ions scatter out of phase $d_{(111)} = \frac{a}{\sqrt{3}} = \frac{4.11}{\sqrt{3}} = 2.373 \text{ Å}$ $\theta = 18.94^{\circ}$ $I_{(111)} \propto y^2 (54 - 18)^2 = 1296y^2$ (Weak reflection)

Reflections

To summarize:

hkl	d	θ	20	I	remark
100	4.11	10.84	21.60	1296	Weak
110	2.91	15.34	30.69	5184	Strong
111	2.373	18.94	37.88	1296	Weak
200	2.055	22.07	44.01	5184	Strong

CsCl Diffraction Pattern

A (not quite so) Simple Crystal Structure

NaCl - Sodium Chloride

Reflections

(111) reflection

(111) reflection

Cl⁻ atoms lie in (111)planes Na⁺ atoms lie in between Scatter out of phase $I \propto A^2(18-8)^2 = 100 A^2$ = (111) is quite weak Cl⁻ atoms lie in (222)planes Na⁺ atoms lie in (222)planes Scatter in phase $I \propto A^2 (18+8)^2 = 262 A^2$ = (222) is quite strong

NaCl Diffraction Pattern

Summary

The diffraction pattern is like a finger print of the

crystal structure:

d values reflect the unit cell parameters (grid)

intensities reflect the atoms/molecules (building blocks)

Real Space

Reciprocal Space

Real Space and Reciprocal Space

Crystal System Reciprocal Space

Ortho	rhombic	Tetragona	1	Cubic		
$\frac{1}{d_{hki}^2} = \frac{h}{a}$	$\frac{k^2}{2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$	$\frac{1}{d_{kkl}^2} = \left[h^2 + k^2\right]$	$+ l^2 \left(\frac{a}{c}\right)^2 \frac{1}{a^2}$	$\frac{1}{d_{hkt}^2} = (h^2 + k^2 + l^2) \frac{1}{a^2}$		
	Monocli	nic		Hexagonal		
$\frac{1}{d_{Akt}^2} = \frac{h}{a^2 s}$	$\frac{k^2}{\ln^2 \gamma} + \frac{k^2}{b^2 \sin^2 \gamma}$	$\frac{1}{2\gamma} - \frac{2 hk \cos \gamma}{ab \sin^2 \gamma} + \frac{l^2}{c^2}$	$\frac{1}{d_{kkl}^2} = \left[\frac{4}{3}\right]^{l}$	$h^{2} + k^{2} + hk) + l^{2} \left(\frac{a}{c}\right)^{2} \frac{1}{a^{2}}$		
		Triclinic				
$\begin{bmatrix} h\\ \overline{a} \end{bmatrix}$	$\cos \gamma \cos \beta$	$1 \frac{h}{a} \cos \alpha$	1 cos ;	$\left \frac{h}{a} \right = \left 1 \cos \gamma \cos \beta \right ^{-1}$		
$\frac{1}{\prod_{k=1}^{2}} = \frac{h}{a} \frac{k}{b}$	1 cos α	$+\frac{k}{b}\cos\gamma\frac{k}{b}\cos\alpha$ +	$\frac{l}{c} \cos \gamma = 1$	$\frac{k}{b}$ · cos y 1 cos a		
1	cos α 1	$\cos \beta \frac{l}{c} = 1$	$\cos\beta\cos\alpha$	$\frac{1}{c}$ $\cos\beta\cos\alpha$ 1		

Peak No.	2 <i>0</i>	sin ²	$rac{sin^2 heta}{sin_{min}^2}$	$2 imesrac{sin^2 heta}{sin_{min}^2}$	$3 imesrac{sin^2 heta}{sin_{min}^2}$	$h^2 + k^2 + l^2$	hkl	a (Å)
1	38.43							
2	44.67							
3	65.02							
4	78.13							
5	82.33							
6	96.93							
7	111.83							
8	116.36							

END

Professional Community & Collaborators

https://www.researchgate.net/profile/Maykel Manawan

Maykel Manawan

II78.69 · Dr · Edit your information Crystallography, X-ray/Neutron Diffraction

Education Subcommittee

Introduction

Maykel Manawan currently works as a lecturer and researcher at Indonesia Defense University. An active member of the International Center for Diffraction Data, ICDD (Education sub-committee), Principal Investigator of the National Li-ion Battery Program (Battery Research Institute-Consortium). Member of Material Research Society Indonesia, MRS-INA. Member of Indonesian Magnetic Society. Member of Indonesia Neutron Scattering. Society.

Skills and Expertise

	ing a second sec	
ithium Ion Batteries	(Superconductivity and Superconduct)	(Magnetic Materials and Magnetism

SEMEN IDONESIA

PT. MUARATEWER SPRING

https://growkudos.com/projects/crystallography-and-diffraction

SCOPUS ID Web of Science ID **ORCHID ID** Google Scholar SINTA ID

57202359553 O-8852-2018 0000-0003-3782-1307 R6tOeqMAAAAJ&hl : 6193883

TERIMA KASIH