

PCR and RT-PCR

<u>PCR</u>, or the Polymerase Chain Reaction, is a process for the amplification of specific fragments of DNA \rightarrow tell us what

<u>Real-Time PCR</u> a specialized technique that allows a PCR reaction to be visualized "in real time" as the reaction progresses → tell us how much

As we will see, Real-Time PCR allows us to <u>measure</u> minute amounts of DNA sequences in a sample!

l Multiple	Detecting M xing from an i	lultiple dye: nstrumen per	S spective		VERSITAS GADJAH I
Dye	Excitation(nm)	Emission(nm)			
SYBR	497	520			
FAM	495	520	1	Choosing a Flouroph	ore & Que
TET	521	536	2		0
JOE	520	548		Fluorophores:	Quenche
VIC		~555	Singleplex - FAM	X-FAM FAM AM, VIC TET, VIC	BHQ-1
HEX	535	556	Duplex- FAM, VIC Triplex - FAM, VIC, I JOE		DABCY
R6G	524	557		Eclipse	
Cy3	550	570	3	CY3	Тамра
TAMRA	555	576		TAMRA	TAWKA
NED		~576		CY3.5, Redmond Red	QSY-7
Cy3.5	581	596	4	CY5 LC640 CY5.5 LC705	BHQ-2
ROX	575	602	5		BHQ-3
exas Re	583	603			
Cy5	649	670	6		
Cy5.5	675	694	7		

FRET	@@ 	UNIVERSITAS GADJAH MADA Donor fluorophore Acceptor fluorophore
=	→@@ ←	During annealing, the two probes bind to the target in a head-to-tall orientation. The acceptor fluorophore fluoresces
 Use two sequence target 	-specific oligonucleotic	e probes designed to bind to adjacent sequences in the
The probes are lab (FRET). The donor attached to the 5'	eled with a pair of dye dye is attached to the a end of the second prob	s that exhibit fluorescence resonance energy transfer 3' end of the first probe, while the acceptor dye is be.
 At the annealing si arrangement. This occur, resulting in 	tep, the probes hybridi annealing brings the d fluorescent emission b	ze to their target sequences in a head-to-tail onor and acceptor dyes into proximity, allowing FRET to y the acceptor.
 The increasing am present. 	ount of acceptor fluore	scence is proportional to the amount of PCR product
UGM.AC.ID		LOCALLY ROOTED, GLOBALLY RESPECTED

://sg.idtdna.com/PrimerQuest	The design parameters:
NIEGRAID DIA REGISTERIO	$_{\text{signific}}$ amplicon size : 70 – 150 hp
Order Manu Products & Sentrices + 39 point & Iduation + Titols +	 Primers
PrimerQuest Tool	 size : 18 – 30 bp the melting temperature: 59 – 65 °C
Assay Design Livesults	• GC content : 35 – 60 %
Sequence Entry	 ➢ Probe size : 20 − 30 bp
 Entor sequence() manually Anontransformer two models were not an entored the second second	• the melting temperature : 64 – 72 °C • GC content : 40 – 60 %.
Зециеное Маше АтРазе 5 Сел бессе он Стир	
 Bow road sequence(sr using Genbank or Assession ID 	List of primers and probe set
 Upload sequences in an Excel file 	
Choose Your Design	
POR CPCR Staw Cus on Design Ferancises	

	Primers a	nd probe set		
	cia unican unican	Standard Nuelcotice BLAST		
Ether Duery	Sequence.	DLASTI programs search nucleolide databases using a nucleoride q	1973 (T278	
Bitter accession	numter(s), gi(s), or FABTA sequence(s) 🥪 numer	Unix Overy subminge (j) Frem (
Cr, uplead the Job Tillio	Chestellie, N. Jan. ann 🛛 🕹			0/1 1 0/1
E Align two or a	nere wegneneen 🦉			% homology of the
Choose Gea	ren 3et	and the second		primers and probe
GAIPEPAR	Nuclearland and an annual second percent of a	• 🐠		to species
Ceganiam Optional	Printing and an and a strategy of the special	a). Exclude (H)		to species
Test de	The separate to the same of the left of 20 m	r na Alberban 🤪		
0033848	E. Widek (NEW 1/2017); Credenkoursets, ser ta	e vangt mens verk		
Contonal Entres Query Contonal	- AND ALE AND AND THE ADDRESS OF A DATE OF	The second state of the second second		
Piogram Sci	ecton			
Optimize for	 Tybis stro at sequences trapplicat; At a second at an an an an an an at a second strong the second strong trapplication of the second strong trapplication; Charace a Status a general general general second strong strong second strong second se			
RIAST	Sea di datalizzo Naciositico col collor (mini) cang E Manazato i e i comitio	Blazes (Optimize for association similar sequence a)		
	http://blast.ncb	i.nlm.nih.gov/Blast.cgi		

Alcroorganism	Target gene	Application	Test characteristics	Food matrix
PCR studies				
Salmonella spp.	invA	Detection	Enrichment qPCR TaqMan [®] , IAC ^a DU [®] : ≤2.5 CFU(25 g salmon and minced meat, 5 CFU(25 g chicken meat, 5 CFU)25 ml milk	Artificially contaminated chicken meat, minced meat, salmon, raw milk
Salmoneila spp.	invA	Detection	Enrichment – qPCR – LightCycler [®] hybridization probes, IAC DL: «.5 cells/25 g	Artificially contaminated fish, minced beef, raw milk Naturally contaminated raw milk and meat
salmonella spp.	invA	Detection	Enrichment – qFCR – TaqMan [®] DE: 0.08 or 0.2 CFU/g (24 h-enrichment or 48 h enrichment)	Artificially contaminated mashed potatoes, soft choese, chilli powder, chocolate, eggs, sprouts, apple juice, fish, shrimp, ground beef, ground chicken
Saimonella spp.	ssrA	Detection	Enrichment – qPCR – TaqMan [®] , IAC DL: 1–10 CPU/cm ²	Artificially contaminated fresh meat carcasses
Salmonella spp.	ia,;A	Detection	Enrichment – qPCR – Molecular Beacon DL: 4 CFU/25 g	Artificially contaminated cantaloup mixed-salad, cilantro, alfalfa sprout
Salmonella enterica	invA	Detection	Enrichment – qPCR – TaqMan [®] DL: <3 CFU/25 g	Artificially contaminated chicken carcass rinses, ground beef, ground pork, raw milk Naturally contaminated chicken carcass rinses, raw milk
Salmonella enterica	SSGN	Detection	Enrichment - qPCR - TaqMan [®] , IAC DL: 1 CFU/10 g	Artificially contaminated chicken, liquid egg, peanut butter

UGM.AC.ID

Microorganism	Target gene	Application	Test characteristics	Food matrix	
aPCR studies					
Saimonella spp.	invA	Detection	Enrichment – qPCR – TaqMan [®] , IAC ⁴ DL ^b ₂ ≤ 2.5 GTU/25 g salmon and minced meat, 5 GTU/25 g chicken meat, 5 GFU/25 ml milk	Artificially contaminated chicken meat, mineed meat, salmon, raw milk	
Salmonella spp.	invA	Detection	Enrichment – qPCR – LightCycler ^{an} hybridization probes, IAC DE: <5 cells/25 g	Artificially contaminated fish, minced beef, raw milk Naturally contaminated raw milk and meat	
Salmonella spp.	invA	Detection	Enrichment qPCR TaqMan [®] DL: 0.08 or 0,2 CFU/g (24 h enrichment or 48 h-enrichment)	Artificially contaminated mashed potatoes, soft cheese, chilli powder, chocolate, eggs, sprouts, apple juice, fish, shrimp, ground beef, ground chicken	
Salmonella spp.	ssrA	Detection	Enrichment qPCR TaqMan [®] , IAC DL: 1-10 CFU/cm ²	Artificially contaminated fresh meat carcasses	
Salmonella spp.	iuµA	Detection	Enrichment – qPCR – Molecular Beacon DI : 4 CFU/25 g	Artificially contaminated cantaloup mixed-salad, cilantro, alfalfa sprout	
Sequences of primers Name	and probes used in design and devel Sequence	opment of the ssrA Salmonella assay,	Size (bp)	$T_{\rm m}\left({}^{\prime}C ight)$	
Entero-tin P	5'-GCGCCTG	ATTCTGCATTCGA-3	20	63.6 67.5	
Entero-tm R	S'-IGGIGGA	SCTGGCGGGA-3	17		
FTR	5 -GAGTIGA/	ACCOGCCTC-3	16	50.0	
SAM 1	FAM-CAAACC	ACGAAACCTACGCTTTAGC-BBQ	25	65.8	
5AM 2	FAM-AGACTAGCCTGATTCGTTTTAACGCT-BBQ		26	66.6	

Listeria monocytogenes	prfA	Detection	Enrichment + qPCR – TaqMan ^{ar} , IAC DI: 7.5 CFU/25 ml milk, 9 CFU/15 g salmon, 1 CFU/15 g pâtê and cheese	Artificially contaminated raw milk, salmon, paté, green-veined cheese Naturally contaminated fish, meat, meat products and dairy products
Listeria monocytogenes and other species	ssrA	Detection	Enrichment + qPCR – hybridization probes, IAC DL: $1-5$ CFU/25 α	Artificially contaminated soft cheese meat, milk, vegetables (coleslaw), smoked salmon
Listeria monocytogenes and other species	ssrA	Detection	Enrichment + $qPCR - LightCyclerhybridization probes, IACDL: 1 - 5 CPU/25 g$	Milk and milk products, meat and meat products, fish and fishery products
Listeria monocytogenes	165 rRNA	Detection Quantification	Eurichment + qPCR - SYBR [®] Green DL: 1–5 CFU/50 g	Artificially and naturally contaminated collard green, cabbage lettuce, mixed parsley and spring onion bunches, Chinese cabbage, arugula, chicory, wild chicory, spinach, watercress
Staphylococcus aureus	пис	Detection Quantification	qPCR – SYBR [®] Green, TaqMan [®] QL: 20–300 CFU/2 g (depending on the type of cheese)	Artificially contaminated cheese
staphylococcus aureus	nuc	Detection Quantification	qPCR – SYBR® Green, TaqMan® DL: 5 × 10 ² CFU/g	Artificially contaminated beef Natural fresh meat products, salads, cheese, smoked salmon, päté, entrails, prepared egg, ready to serve dishes, ice cream, dry-cured meat products, fresh salmon
staphylococcus aureus	nuc	Detection Quantification	qPCR TaqMan®	Milk from cows with intramammary infection
Staphylococcus aureus	hirA	Detection	Enrichment + $qPCR - SY3R^{ai}$ Green DL: 1 CFU/g; 10 ³ CFU/g without enrichment	Artificially contaminated milk, pork
Enterobacteriaceae	lacZ	Detection Quantification	Enrichment + qPCR – SYBR [®] Green DL: 1 cell/ml	Artificially contaminated cheese
Escherichia coli	u id A	Detection Quantification	Emichment + qPCR - TaqMan ^m DL/QL: 1 CFU/g; 10 ³ CFU/g without enrichment	Artificially contaminated minced beef, tuna, raw oyster
Escherichia cob 0157:H7	eae.	Detection	Enrichment + $qPCR$ - Scorpion D/QL: 10^3 CUU/ml (without enrichment)	Artificially contaminated milk Natural samples of raw milk, pasteurized milk, ice cream, kulfi (frozen dessert), paneer

TERIMA KASIH

	Default analysis settings		Adjusted analysis settings		Difference	
Instrument	Efficiency	y-Intercept	Efficiency	y-Intercept	∆ Efficiency	∆ y-Intercept
ABI Prism® 7500	128%	33.3	99%	35.9	-29.0%	-2.67
ABI Prism® 7700	106%	35.8	103%	35.9	-3.0%	-0.10
BioRad iCycler [®]	100%	34.8	98%	35.9	-1.3%	-1.12
Cepheid SmartCycler I [®]	94%	38.5	96%	36.9	2.7%	1.62
Corbett Rotorgene™	101%	36.3	101%	37.4	0.3%	- 1.0 4
Roche LC 1.2°	95%	36.8	94%	38.1	-0.8%	-1.32
Roche LC 2 [®]	99%	34.5	98%	35.9	-1.7%	-1.41
Stratagene Mx3000p [®]	102%	37.8	103%	35.9	0.6%	1.83
Stratagene Mx4000®	101%	36.9	102%	35.9	0.5%	0.97
Mean	103%	36.1	99%	35.9	-3.5%	0.21
Range	94%-128%	33.3-38.5	94%-103%	35.90-38.11	0.3%-29%	0.21-2.67

				UNIVERSITAS GADJAH MADA				
• Delta-delta Ct method: (assumes same efficiencies for each primer set)								
		Tissue #1	Reference Primer set	GOI Primer set				
		Tissue #2	<u>2:</u> 20	24				
	Act Date	Delta Ct:		22- <mark>21</mark> = 1				
	1 st Delta	Delta Ct:		24-20 = 4				
	2 nd Delta	Delta Ct:		4-1 = 3				
		F	Fold induction = $2^3 = 8$					
UGM.AC.ID	LOCALLY ROOTED, GLOBALLY RESPECTÊD							

	UNIVERSITAS GADJAH MADA
UGM.AC.ID	LOCALLY ROOTED, GLOBALLY RESPECTED

TERIMA KASIH

	UNIVERSITAS GADJAH MADA
Sensitive, spec Primary enrichment Decreased spe Primary enrichment	cific, and reliable detection of pathogenic contaminants DNA extraction pecificity Secondary enrichment Detection by immunoassay
Highly labor in Traditional o primary enri	ntensive culture: Traditional culture: Selective Confirmation chment secondary enrichment isolation of pathogen 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
UGM.AC.ID	LOCALLY ROOTED, GLOBALLY RESPECTÊD

Combination of the separation method

Bacterium (no. of strains) or food homogenate(s)	Strains	Buoyant density (g/ml)
Bacteria		
Escherichia coli	EC-2736, EC-2649, EC-3515, EC-4725, EC-4131, SE-02005, SE-02025, SE-02027	1.064-1.083
Salmonella spp.	Sal-2339, Sal-2340, Sal-2341	1.075-1.085
Yersinia enterocolitica	Pa177, Pa241, Pa2718, Pa9346, Pa12986	1.082-1.084
Providencia alcalifaciens	ATCC 9886, 112, 118	1.080-1.083
Campylobacter jejuni	SC009, SC010, SC011, SC012	1.075-1.098
Vibrio cholerae	ATCC 14035, NIID63-93, NIID169-68, SVP84	1.052-1.066
TDH-positive V. parahaemolyticus	SVP02, SVP03, SVP04, NIIDK4	1.050-1.058
Vibrio vulnificus	SVV1526, SVV04001, SVV04003	1.031-1.035
Aeromonas hydrophila	ATCC 7966, M25	1.045-1.058
Staphylococcus aureus	SS 05, FB0501, FB0601	1.109-1.120
Bacillus cereus	127, 128, 129, 130, 131, 132, 133, 135, 136, 137	1.085-1.092
Clostridium perfringens	CW2, H2	1.082
Food homogenates		
Minced beef, bovine liver, minced chicken, processed cheese, scrambled egg, tofu, Chinese ncodle, bread, raw chopped jack horse mackerel, short-neck clam		≦1.025
Minced pork, ready-to-eat hamburger steak		≦1.033
Milk		≦1.049

UGM.AC.ID

LOCALLY ROOTED, GLOBALLY RESPECTED

3

		Inoculum (log10 CFU/25 g) and concn of cells (log10 CFU/25 g) as determined by viable-cell counting and RTi-qPCR ^a																
Food sample	S. enterica			E. coli O157:H7		Y. enterocolitica		P. alcalifaciens		C. jejuni		C. perfringens						
	Inoculum	VC	qPCR	Inoculum	VC	qPCR	Inoculum	VC	qPCR	Inoculum	VC	qPCR	Inoculum	VC	qPCR	Inoculum	VC	qPCF
Beef	5.9	5.2	5.3	5.0	4.7	4.9	5.9	4.9	5.8	5.9	4.5	3.9	5.7	5.2	4.6	6.3	4.3	4.5
Bovine liver	5.9	5.0	5.8	5.0	3.9	4.5	5.9	4.7	4.5	5.9	5.4	4.8	5.7	3.9	3.1	6.3	4.7	4.2
Pork	5.9	5.0	5.3	5.0	4.2	4.5	5.9	4.5	4.9	5.9	5.3	4.6	5.7	4.9	3.8	6.3	3.7	3.9
Chicken	5.9	5.1	6.0	5.0	4.7	5.1	5.9	4.9	5.0	5.9	4.7	4.4	5.7	4.2	3.2	6.3	4.0	4.6
Processed cheese	5.9	4.9	5.8	5.0	4.2	5.3	5.9	4.5	5.5	5.9	5.1	4.4	5.7	4.5	4.0	6.3	3.5	4.3
Scrambled egg	5.9	5.2	5.8	5.0	4.5	5.2	5.9	5.0	6.0	5.9	5.1	4.5	5.7	3.9	4.0	6.3	4.7	5.0
Tofu	5.9	4.9	5.4	5.0	4.7	4.6	5.9	5.2	4.3	5.9	4.9	4.1	5.7	3.2	3.7	6.3	3.8	4.6
Chinese noodle	5.9	5.5	5.0	5.0	4.2	5.2	5.9	5.2	5.1	5.9	5.0	4.7	5.7	2.9	3.0	6.3	3.7	4.9
Bread	5.9	4.5	5.2	5.0	3.9	5.1	5.9	4.2	4.3	5.9	5.1	4.0	5.7	3.9	3.3	6.3	3.0	4.8
Jack horse mackerel	5.9	5.2	5.4	5.0	3.9	4.6	5.9	4.5	4.7	5.9	5.0	4.0	5.7	4.8	3.5	6.3	4.2	4.7
Short-neck clam	5.9	5.2	5.6	5.0	4.2	4.8	5.9	5.0	5.7	5.9	4.5	3.5	5.7	3.9	3.8	6.3	2.5	3.0
Hamburger steak	5.9	5.1	5.8	5.0	4.4	4.2	5.9	4.3	4.7	5.9	5.0	5.1	5.7	5.0	5.1	6.3	4.0	5.3
Whole milk	5.9	5.2	5.6	5.0	4.7	5.1	5.9	5.7	4.7	5.9	4.5	4.6	5.7	3.7	3.8	6.3	4.7	5.3

UGM.AC.ID

Com	pariso	n of B	acteri	al DN/	A isola	ition k	kit
xtraction Metho	d Manufacturer	Principle	Costs per sample [–] [€]	Completion time ⁻ (hands-on- time)	Cell count	Yield [µg] (SD)	Purity [A260/280] (SD)

				time)			
Genomic-tip 20/G	Qiagen	anion-exchange column (gravity)	8.1	8 h (45 min)	4 × 10 ⁹	9.8 (3.5)	1.77 (0.06)
MagAttract HMW DNA Kit	Qiagen	DNA-binding magnetic beads, silica-based	4.4	2 h 40 min (1 h)	2 × 10 ⁹	10.3 (6.6)	1.83 (0.05)
MasterPure DNA Purification Kit	Epicentre	salting-out	1.1	2 h 10 min (35 min)	0.4 × 10 ⁹	3.3 (1.0)	1.82 (0.03)
Wizard Genomic DNA Purification Kit	Promega	salting-out	2.0	3 h (35 min)	4 × 10 ⁹	18.1 (7.5)	1.58 (0.01)
DNeasy Blood & Tissue Kit	Qiagen	silica-membrane column (spin)	3.2	3 h (45 min)	2 × 10 ⁹	10.9 (1.3)	1.72 (0.05)
Plasmid Mini Kit	Qiagen	alkaline lysis, anion-exchange column (gravity)	5.2	3 h 50 min (40 min)	18 × 10 ⁹	0.50 (0.2)	1.67 (0.03)

UGM.AC.ID

LOCALLY ROOTED, GLOBALLY RESPECTED

UNIVERSITAS GADJAH MADA

Comparison of Food DNA isolation kit

		C.	/log CFU (mean	± SE) determined	by:
Food	Target gene	Prepman Ultra	Bugs'n Beads	Nucleospin food kit	Wizard magnetic DNA purifica- tion system for food
TSB	stx1	10.2 ± 0.4	10.7 ± 0.4	9.8 ± 0.4	10.1 ± 0.3
	stx2	10.4 ± 0.3	11.1 ± 0.4	10.3 ± 0.3	10.7 ± 0.3
Bread	stx1	9.8 ± 0.2	11.0 ± 0.2	10.1 ± 0.5	9.8 ± 0.3
	stx2	9.4 ± 0.3	10.9 ± 0.4	9.8 ± 0.4	9.7 ± 0.4
Ground beef	stx1	10.3 ± 0.3	12.2 ± 0.2	11.1 ± 0.5	9.7 ± 0.3
	stx2	10.3 ± 0.3	12.5 ± 0.4	11.6 ± 0.5	9.7 ± 0.2
Salad greens	stx1	10.0 ± 0.1	10.9 ± 0.2	10.0 ± 0.0	10.1 ± 0.2
	stx2	10.0 ± 0.2	10.9 ± 0.0	10.0 ± 0.2	10.4 ± 0.2
Salad dressing	stx1	10.0 ± 0.3	10.3 ± 0.4	10.0 ± 0.8	9.4 ± 0.3
	stx2	10.0 ± 0.3	10.3 ± 0.5	9.5 ± 0.3	10.1 ± 0.6

Comparison of Food DNA isolation kit

E. coli

Kit	Method	Ease of use
Prepman Ultra	Proprietary solution	Very simple, minimum manipulation of sample
Bugs'n Beads	Magnetic beads	Simple, centrifuge not absolutely necessary
NucleoSpin food kit	Spin columns	Considerable hands-on time
Wizard magnetic DNA purification system for food	Magnetic beads	Considerable hands-on time, centrifuge not absolutely necessary

UGM.AC.ID

LOCALLY ROOTED, GLOBALLY RESPECTED

TERIMA KASIH

